All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.fitting.leastsquares.AbstractEvaluation Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting.leastsquares;

import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.DecompositionSolver;
import org.apache.commons.math3.linear.QRDecomposition;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.util.FastMath;

/**
 * An implementation of {@link Evaluation} that is designed for extension. All of the
 * methods implemented here use the methods that are left unimplemented.
 * 

* TODO cache results? * * @since 3.3 */ public abstract class AbstractEvaluation implements Evaluation { /** number of observations */ private final int observationSize; /** * Constructor. * * @param observationSize the number of observation. Needed for {@link * #getRMS()}. */ AbstractEvaluation(final int observationSize) { this.observationSize = observationSize; } /** {@inheritDoc} */ public RealMatrix getCovariances(double threshold) { // Set up the Jacobian. final RealMatrix j = this.getJacobian(); // Compute transpose(J)J. final RealMatrix jTj = j.transpose().multiply(j); // Compute the covariances matrix. final DecompositionSolver solver = new QRDecomposition(jTj, threshold).getSolver(); return solver.getInverse(); } /** {@inheritDoc} */ public RealVector getSigma(double covarianceSingularityThreshold) { final RealMatrix cov = this.getCovariances(covarianceSingularityThreshold); final int nC = cov.getColumnDimension(); final RealVector sig = new ArrayRealVector(nC); for (int i = 0; i < nC; ++i) { sig.setEntry(i, FastMath.sqrt(cov.getEntry(i,i))); } return sig; } /** {@inheritDoc} */ public double getRMS() { final double cost = this.getCost(); return FastMath.sqrt(cost * cost / this.observationSize); } /** {@inheritDoc} */ public double getCost() { final ArrayRealVector r = new ArrayRealVector(this.getResiduals()); return FastMath.sqrt(r.dotProduct(r)); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy