All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.linear.DiagonalMatrix Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.linear;

import java.io.Serializable;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.Precision;

/**
 * Implementation of a diagonal matrix.
 *
 * @since 3.1.1
 */
public class DiagonalMatrix extends AbstractRealMatrix
    implements Serializable {
    /** Serializable version identifier. */
    private static final long serialVersionUID = 20121229L;
    /** Entries of the diagonal. */
    private final double[] data;

    /**
     * Creates a matrix with the supplied dimension.
     *
     * @param dimension Number of rows and columns in the new matrix.
     * @throws NotStrictlyPositiveException if the dimension is
     * not positive.
     */
    public DiagonalMatrix(final int dimension)
        throws NotStrictlyPositiveException {
        super(dimension, dimension);
        data = new double[dimension];
    }

    /**
     * Creates a matrix using the input array as the underlying data.
     * 
* The input array is copied, not referenced. * * @param d Data for the new matrix. */ public DiagonalMatrix(final double[] d) { this(d, true); } /** * Creates a matrix using the input array as the underlying data. *
* If an array is created specially in order to be embedded in a * this instance and not used directly, the {@code copyArray} may be * set to {@code false}. * This will prevent the copying and improve performance as no new * array will be built and no data will be copied. * * @param d Data for new matrix. * @param copyArray if {@code true}, the input array will be copied, * otherwise it will be referenced. * @exception NullArgumentException if d is null */ public DiagonalMatrix(final double[] d, final boolean copyArray) throws NullArgumentException { MathUtils.checkNotNull(d); data = copyArray ? d.clone() : d; } /** * {@inheritDoc} * * @throws DimensionMismatchException if the requested dimensions are not equal. */ @Override public RealMatrix createMatrix(final int rowDimension, final int columnDimension) throws NotStrictlyPositiveException, DimensionMismatchException { if (rowDimension != columnDimension) { throw new DimensionMismatchException(rowDimension, columnDimension); } return new DiagonalMatrix(rowDimension); } /** {@inheritDoc} */ @Override public RealMatrix copy() { return new DiagonalMatrix(data); } /** * Compute the sum of {@code this} and {@code m}. * * @param m Matrix to be added. * @return {@code this + m}. * @throws MatrixDimensionMismatchException if {@code m} is not the same * size as {@code this}. */ public DiagonalMatrix add(final DiagonalMatrix m) throws MatrixDimensionMismatchException { // Safety check. MatrixUtils.checkAdditionCompatible(this, m); final int dim = getRowDimension(); final double[] outData = new double[dim]; for (int i = 0; i < dim; i++) { outData[i] = data[i] + m.data[i]; } return new DiagonalMatrix(outData, false); } /** * Returns {@code this} minus {@code m}. * * @param m Matrix to be subtracted. * @return {@code this - m} * @throws MatrixDimensionMismatchException if {@code m} is not the same * size as {@code this}. */ public DiagonalMatrix subtract(final DiagonalMatrix m) throws MatrixDimensionMismatchException { MatrixUtils.checkSubtractionCompatible(this, m); final int dim = getRowDimension(); final double[] outData = new double[dim]; for (int i = 0; i < dim; i++) { outData[i] = data[i] - m.data[i]; } return new DiagonalMatrix(outData, false); } /** * Returns the result of postmultiplying {@code this} by {@code m}. * * @param m matrix to postmultiply by * @return {@code this * m} * @throws DimensionMismatchException if * {@code columnDimension(this) != rowDimension(m)} */ public DiagonalMatrix multiply(final DiagonalMatrix m) throws DimensionMismatchException { MatrixUtils.checkMultiplicationCompatible(this, m); final int dim = getRowDimension(); final double[] outData = new double[dim]; for (int i = 0; i < dim; i++) { outData[i] = data[i] * m.data[i]; } return new DiagonalMatrix(outData, false); } /** * Returns the result of postmultiplying {@code this} by {@code m}. * * @param m matrix to postmultiply by * @return {@code this * m} * @throws DimensionMismatchException if * {@code columnDimension(this) != rowDimension(m)} */ @Override public RealMatrix multiply(final RealMatrix m) throws DimensionMismatchException { if (m instanceof DiagonalMatrix) { return multiply((DiagonalMatrix) m); } else { MatrixUtils.checkMultiplicationCompatible(this, m); final int nRows = m.getRowDimension(); final int nCols = m.getColumnDimension(); final double[][] product = new double[nRows][nCols]; for (int r = 0; r < nRows; r++) { for (int c = 0; c < nCols; c++) { product[r][c] = data[r] * m.getEntry(r, c); } } return new Array2DRowRealMatrix(product, false); } } /** {@inheritDoc} */ @Override public double[][] getData() { final int dim = getRowDimension(); final double[][] out = new double[dim][dim]; for (int i = 0; i < dim; i++) { out[i][i] = data[i]; } return out; } /** * Gets a reference to the underlying data array. * * @return 1-dimensional array of entries. */ public double[] getDataRef() { return data; } /** {@inheritDoc} */ @Override public double getEntry(final int row, final int column) throws OutOfRangeException { MatrixUtils.checkMatrixIndex(this, row, column); return row == column ? data[row] : 0; } /** {@inheritDoc} * @throws NumberIsTooLargeException if {@code row != column} and value is non-zero. */ @Override public void setEntry(final int row, final int column, final double value) throws OutOfRangeException, NumberIsTooLargeException { if (row == column) { MatrixUtils.checkRowIndex(this, row); data[row] = value; } else { ensureZero(value); } } /** {@inheritDoc} * @throws NumberIsTooLargeException if {@code row != column} and increment is non-zero. */ @Override public void addToEntry(final int row, final int column, final double increment) throws OutOfRangeException, NumberIsTooLargeException { if (row == column) { MatrixUtils.checkRowIndex(this, row); data[row] += increment; } else { ensureZero(increment); } } /** {@inheritDoc} */ @Override public void multiplyEntry(final int row, final int column, final double factor) throws OutOfRangeException { // we don't care about non-diagonal elements for multiplication if (row == column) { MatrixUtils.checkRowIndex(this, row); data[row] *= factor; } } /** {@inheritDoc} */ @Override public int getRowDimension() { return data.length; } /** {@inheritDoc} */ @Override public int getColumnDimension() { return data.length; } /** {@inheritDoc} */ @Override public double[] operate(final double[] v) throws DimensionMismatchException { return multiply(new DiagonalMatrix(v, false)).getDataRef(); } /** {@inheritDoc} */ @Override public double[] preMultiply(final double[] v) throws DimensionMismatchException { return operate(v); } /** {@inheritDoc} */ @Override public RealVector preMultiply(final RealVector v) throws DimensionMismatchException { final double[] vectorData; if (v instanceof ArrayRealVector) { vectorData = ((ArrayRealVector) v).getDataRef(); } else { vectorData = v.toArray(); } return MatrixUtils.createRealVector(preMultiply(vectorData)); } /** Ensure a value is zero. * @param value value to check * @exception NumberIsTooLargeException if value is not zero */ private void ensureZero(final double value) throws NumberIsTooLargeException { if (!Precision.equals(0.0, value, 1)) { throw new NumberIsTooLargeException(FastMath.abs(value), 0, true); } } /** * Computes the inverse of this diagonal matrix. *

* Note: this method will use a singularity threshold of 0, * use {@link #inverse(double)} if a different threshold is needed. * * @return the inverse of {@code m} * @throws SingularMatrixException if the matrix is singular * @since 3.3 */ public DiagonalMatrix inverse() throws SingularMatrixException { return inverse(0); } /** * Computes the inverse of this diagonal matrix. * * @param threshold Singularity threshold. * @return the inverse of {@code m} * @throws SingularMatrixException if the matrix is singular * @since 3.3 */ public DiagonalMatrix inverse(double threshold) throws SingularMatrixException { if (isSingular(threshold)) { throw new SingularMatrixException(); } final double[] result = new double[data.length]; for (int i = 0; i < data.length; i++) { result[i] = 1.0 / data[i]; } return new DiagonalMatrix(result, false); } /** Returns whether this diagonal matrix is singular, i.e. any diagonal entry * is equal to {@code 0} within the given threshold. * * @param threshold Singularity threshold. * @return {@code true} if the matrix is singular, {@code false} otherwise * @since 3.3 */ public boolean isSingular(double threshold) { for (int i = 0; i < data.length; i++) { if (Precision.equals(data[i], 0.0, threshold)) { return true; } } return false; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy