All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.linear.SparseFieldVector Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.linear;

import java.io.Serializable;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.FieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.OpenIntToFieldHashMap;

/**
 * This class implements the {@link FieldVector} interface with a {@link OpenIntToFieldHashMap} backing store.
 * 

* Caveat: This implementation assumes that, for any {@code x}, * the equality {@code x * 0d == 0d} holds. But it is is not true for * {@code NaN}. Moreover, zero entries will lose their sign. * Some operations (that involve {@code NaN} and/or infinities) may * thus give incorrect results. *

* @param the type of the field elements * @since 2.0 */ public class SparseFieldVector> implements FieldVector, Serializable { /** Serialization identifier. */ private static final long serialVersionUID = 7841233292190413362L; /** Field to which the elements belong. */ private final Field field; /** Entries of the vector. */ private final OpenIntToFieldHashMap entries; /** Dimension of the vector. */ private final int virtualSize; /** * Build a 0-length vector. * Zero-length vectors may be used to initialize construction of vectors * by data gathering. We start with zero-length and use either the {@link * #SparseFieldVector(SparseFieldVector, int)} constructor * or one of the {@code append} method ({@link #append(FieldVector)} or * {@link #append(SparseFieldVector)}) to gather data into this vector. * * @param field Field to which the elements belong. */ public SparseFieldVector(Field field) { this(field, 0); } /** * Construct a vector of zeroes. * * @param field Field to which the elements belong. * @param dimension Size of the vector. */ public SparseFieldVector(Field field, int dimension) { this.field = field; virtualSize = dimension; entries = new OpenIntToFieldHashMap(field); } /** * Build a resized vector, for use with append. * * @param v Original vector * @param resize Amount to add. */ protected SparseFieldVector(SparseFieldVector v, int resize) { field = v.field; virtualSize = v.getDimension() + resize; entries = new OpenIntToFieldHashMap(v.entries); } /** * Build a vector with known the sparseness (for advanced use only). * * @param field Field to which the elements belong. * @param dimension Size of the vector. * @param expectedSize Expected number of non-zero entries. */ public SparseFieldVector(Field field, int dimension, int expectedSize) { this.field = field; virtualSize = dimension; entries = new OpenIntToFieldHashMap(field,expectedSize); } /** * Create from a Field array. * Only non-zero entries will be stored. * * @param field Field to which the elements belong. * @param values Set of values to create from. * @exception NullArgumentException if values is null */ public SparseFieldVector(Field field, T[] values) throws NullArgumentException { MathUtils.checkNotNull(values); this.field = field; virtualSize = values.length; entries = new OpenIntToFieldHashMap(field); for (int key = 0; key < values.length; key++) { T value = values[key]; entries.put(key, value); } } /** * Copy constructor. * * @param v Instance to copy. */ public SparseFieldVector(SparseFieldVector v) { field = v.field; virtualSize = v.getDimension(); entries = new OpenIntToFieldHashMap(v.getEntries()); } /** * Get the entries of this instance. * * @return the entries of this instance */ private OpenIntToFieldHashMap getEntries() { return entries; } /** * Optimized method to add sparse vectors. * * @param v Vector to add. * @return {@code this + v}. * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this}. */ public FieldVector add(SparseFieldVector v) throws DimensionMismatchException { checkVectorDimensions(v.getDimension()); SparseFieldVector res = (SparseFieldVector)copy(); OpenIntToFieldHashMap.Iterator iter = v.getEntries().iterator(); while (iter.hasNext()) { iter.advance(); int key = iter.key(); T value = iter.value(); if (entries.containsKey(key)) { res.setEntry(key, entries.get(key).add(value)); } else { res.setEntry(key, value); } } return res; } /** * Construct a vector by appending a vector to this vector. * * @param v Vector to append to this one. * @return a new vector. */ public FieldVector append(SparseFieldVector v) { SparseFieldVector res = new SparseFieldVector(this, v.getDimension()); OpenIntToFieldHashMap.Iterator iter = v.entries.iterator(); while (iter.hasNext()) { iter.advance(); res.setEntry(iter.key() + virtualSize, iter.value()); } return res; } /** {@inheritDoc} */ public FieldVector append(FieldVector v) { if (v instanceof SparseFieldVector) { return append((SparseFieldVector) v); } else { final int n = v.getDimension(); FieldVector res = new SparseFieldVector(this, n); for (int i = 0; i < n; i++) { res.setEntry(i + virtualSize, v.getEntry(i)); } return res; } } /** {@inheritDoc} * @exception NullArgumentException if d is null */ public FieldVector append(T d) throws NullArgumentException { MathUtils.checkNotNull(d); FieldVector res = new SparseFieldVector(this, 1); res.setEntry(virtualSize, d); return res; } /** {@inheritDoc} */ public FieldVector copy() { return new SparseFieldVector(this); } /** {@inheritDoc} */ public T dotProduct(FieldVector v) throws DimensionMismatchException { checkVectorDimensions(v.getDimension()); T res = field.getZero(); OpenIntToFieldHashMap.Iterator iter = entries.iterator(); while (iter.hasNext()) { iter.advance(); res = res.add(v.getEntry(iter.key()).multiply(iter.value())); } return res; } /** {@inheritDoc} */ public FieldVector ebeDivide(FieldVector v) throws DimensionMismatchException, MathArithmeticException { checkVectorDimensions(v.getDimension()); SparseFieldVector res = new SparseFieldVector(this); OpenIntToFieldHashMap.Iterator iter = res.entries.iterator(); while (iter.hasNext()) { iter.advance(); res.setEntry(iter.key(), iter.value().divide(v.getEntry(iter.key()))); } return res; } /** {@inheritDoc} */ public FieldVector ebeMultiply(FieldVector v) throws DimensionMismatchException { checkVectorDimensions(v.getDimension()); SparseFieldVector res = new SparseFieldVector(this); OpenIntToFieldHashMap.Iterator iter = res.entries.iterator(); while (iter.hasNext()) { iter.advance(); res.setEntry(iter.key(), iter.value().multiply(v.getEntry(iter.key()))); } return res; } /** * {@inheritDoc} * * @deprecated as of 3.1, to be removed in 4.0. Please use the {@link #toArray()} method instead. */ @Deprecated public T[] getData() { return toArray(); } /** {@inheritDoc} */ public int getDimension() { return virtualSize; } /** {@inheritDoc} */ public T getEntry(int index) throws OutOfRangeException { checkIndex(index); return entries.get(index); } /** {@inheritDoc} */ public Field getField() { return field; } /** {@inheritDoc} */ public FieldVector getSubVector(int index, int n) throws OutOfRangeException, NotPositiveException { if (n < 0) { throw new NotPositiveException(LocalizedFormats.NUMBER_OF_ELEMENTS_SHOULD_BE_POSITIVE, n); } checkIndex(index); checkIndex(index + n - 1); SparseFieldVector res = new SparseFieldVector(field,n); int end = index + n; OpenIntToFieldHashMap.Iterator iter = entries.iterator(); while (iter.hasNext()) { iter.advance(); int key = iter.key(); if (key >= index && key < end) { res.setEntry(key - index, iter.value()); } } return res; } /** {@inheritDoc} */ public FieldVector mapAdd(T d) throws NullArgumentException { return copy().mapAddToSelf(d); } /** {@inheritDoc} */ public FieldVector mapAddToSelf(T d) throws NullArgumentException { for (int i = 0; i < virtualSize; i++) { setEntry(i, getEntry(i).add(d)); } return this; } /** {@inheritDoc} */ public FieldVector mapDivide(T d) throws NullArgumentException, MathArithmeticException { return copy().mapDivideToSelf(d); } /** {@inheritDoc} */ public FieldVector mapDivideToSelf(T d) throws NullArgumentException, MathArithmeticException { OpenIntToFieldHashMap.Iterator iter = entries.iterator(); while (iter.hasNext()) { iter.advance(); entries.put(iter.key(), iter.value().divide(d)); } return this; } /** {@inheritDoc} */ public FieldVector mapInv() throws MathArithmeticException { return copy().mapInvToSelf(); } /** {@inheritDoc} */ public FieldVector mapInvToSelf() throws MathArithmeticException { for (int i = 0; i < virtualSize; i++) { setEntry(i, field.getOne().divide(getEntry(i))); } return this; } /** {@inheritDoc} */ public FieldVector mapMultiply(T d) throws NullArgumentException { return copy().mapMultiplyToSelf(d); } /** {@inheritDoc} */ public FieldVector mapMultiplyToSelf(T d) throws NullArgumentException { OpenIntToFieldHashMap.Iterator iter = entries.iterator(); while (iter.hasNext()) { iter.advance(); entries.put(iter.key(), iter.value().multiply(d)); } return this; } /** {@inheritDoc} */ public FieldVector mapSubtract(T d) throws NullArgumentException { return copy().mapSubtractToSelf(d); } /** {@inheritDoc} */ public FieldVector mapSubtractToSelf(T d) throws NullArgumentException { return mapAddToSelf(field.getZero().subtract(d)); } /** * Optimized method to compute outer product when both vectors are sparse. * @param v vector with which outer product should be computed * @return the matrix outer product between instance and v */ public FieldMatrix outerProduct(SparseFieldVector v) { final int n = v.getDimension(); SparseFieldMatrix res = new SparseFieldMatrix(field, virtualSize, n); OpenIntToFieldHashMap.Iterator iter = entries.iterator(); while (iter.hasNext()) { iter.advance(); OpenIntToFieldHashMap.Iterator iter2 = v.entries.iterator(); while (iter2.hasNext()) { iter2.advance(); res.setEntry(iter.key(), iter2.key(), iter.value().multiply(iter2.value())); } } return res; } /** {@inheritDoc} */ public FieldMatrix outerProduct(FieldVector v) { if (v instanceof SparseFieldVector) { return outerProduct((SparseFieldVector)v); } else { final int n = v.getDimension(); FieldMatrix res = new SparseFieldMatrix(field, virtualSize, n); OpenIntToFieldHashMap.Iterator iter = entries.iterator(); while (iter.hasNext()) { iter.advance(); int row = iter.key(); FieldElementvalue = iter.value(); for (int col = 0; col < n; col++) { res.setEntry(row, col, value.multiply(v.getEntry(col))); } } return res; } } /** {@inheritDoc} */ public FieldVector projection(FieldVector v) throws DimensionMismatchException, MathArithmeticException { checkVectorDimensions(v.getDimension()); return v.mapMultiply(dotProduct(v).divide(v.dotProduct(v))); } /** {@inheritDoc} * @exception NullArgumentException if value is null */ public void set(T value) { MathUtils.checkNotNull(value); for (int i = 0; i < virtualSize; i++) { setEntry(i, value); } } /** {@inheritDoc} * @exception NullArgumentException if value is null */ public void setEntry(int index, T value) throws NullArgumentException, OutOfRangeException { MathUtils.checkNotNull(value); checkIndex(index); entries.put(index, value); } /** {@inheritDoc} */ public void setSubVector(int index, FieldVector v) throws OutOfRangeException { checkIndex(index); checkIndex(index + v.getDimension() - 1); final int n = v.getDimension(); for (int i = 0; i < n; i++) { setEntry(i + index, v.getEntry(i)); } } /** * Optimized method to compute {@code this} minus {@code v}. * @param v vector to be subtracted * @return {@code this - v} * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this}. */ public SparseFieldVector subtract(SparseFieldVector v) throws DimensionMismatchException { checkVectorDimensions(v.getDimension()); SparseFieldVector res = (SparseFieldVector)copy(); OpenIntToFieldHashMap.Iterator iter = v.getEntries().iterator(); while (iter.hasNext()) { iter.advance(); int key = iter.key(); if (entries.containsKey(key)) { res.setEntry(key, entries.get(key).subtract(iter.value())); } else { res.setEntry(key, field.getZero().subtract(iter.value())); } } return res; } /** {@inheritDoc} */ public FieldVector subtract(FieldVector v) throws DimensionMismatchException { if (v instanceof SparseFieldVector) { return subtract((SparseFieldVector)v); } else { final int n = v.getDimension(); checkVectorDimensions(n); SparseFieldVector res = new SparseFieldVector(this); for (int i = 0; i < n; i++) { if (entries.containsKey(i)) { res.setEntry(i, entries.get(i).subtract(v.getEntry(i))); } else { res.setEntry(i, field.getZero().subtract(v.getEntry(i))); } } return res; } } /** {@inheritDoc} */ public T[] toArray() { T[] res = MathArrays.buildArray(field, virtualSize); OpenIntToFieldHashMap.Iterator iter = entries.iterator(); while (iter.hasNext()) { iter.advance(); res[iter.key()] = iter.value(); } return res; } /** * Check whether an index is valid. * * @param index Index to check. * @throws OutOfRangeException if the index is not valid. */ private void checkIndex(final int index) throws OutOfRangeException { if (index < 0 || index >= getDimension()) { throw new OutOfRangeException(index, 0, getDimension() - 1); } } /** * Checks that the indices of a subvector are valid. * * @param start the index of the first entry of the subvector * @param end the index of the last entry of the subvector (inclusive) * @throws OutOfRangeException if {@code start} of {@code end} are not valid * @throws NumberIsTooSmallException if {@code end < start} * @since 3.3 */ private void checkIndices(final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { final int dim = getDimension(); if ((start < 0) || (start >= dim)) { throw new OutOfRangeException(LocalizedFormats.INDEX, start, 0, dim - 1); } if ((end < 0) || (end >= dim)) { throw new OutOfRangeException(LocalizedFormats.INDEX, end, 0, dim - 1); } if (end < start) { throw new NumberIsTooSmallException(LocalizedFormats.INITIAL_ROW_AFTER_FINAL_ROW, end, start, false); } } /** * Check if instance dimension is equal to some expected value. * * @param n Expected dimension. * @throws DimensionMismatchException if the dimensions do not match. */ protected void checkVectorDimensions(int n) throws DimensionMismatchException { if (getDimension() != n) { throw new DimensionMismatchException(getDimension(), n); } } /** {@inheritDoc} */ public FieldVector add(FieldVector v) throws DimensionMismatchException { if (v instanceof SparseFieldVector) { return add((SparseFieldVector) v); } else { final int n = v.getDimension(); checkVectorDimensions(n); SparseFieldVector res = new SparseFieldVector(field, getDimension()); for (int i = 0; i < n; i++) { res.setEntry(i, v.getEntry(i).add(getEntry(i))); } return res; } } /** * Visits (but does not alter) all entries of this vector in default order * (increasing index). * * @param visitor the visitor to be used to process the entries of this * vector * @return the value returned by {@link FieldVectorPreservingVisitor#end()} * at the end of the walk * @since 3.3 */ public T walkInDefaultOrder(final FieldVectorPreservingVisitor visitor) { final int dim = getDimension(); visitor.start(dim, 0, dim - 1); for (int i = 0; i < dim; i++) { visitor.visit(i, getEntry(i)); } return visitor.end(); } /** * Visits (but does not alter) some entries of this vector in default order * (increasing index). * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link FieldVectorPreservingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.3 */ public T walkInDefaultOrder(final FieldVectorPreservingVisitor visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { checkIndices(start, end); visitor.start(getDimension(), start, end); for (int i = start; i <= end; i++) { visitor.visit(i, getEntry(i)); } return visitor.end(); } /** * Visits (but does not alter) all entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor the visitor to be used to process the entries of this * vector * @return the value returned by {@link FieldVectorPreservingVisitor#end()} * at the end of the walk * @since 3.3 */ public T walkInOptimizedOrder(final FieldVectorPreservingVisitor visitor) { return walkInDefaultOrder(visitor); } /** * Visits (but does not alter) some entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link FieldVectorPreservingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.3 */ public T walkInOptimizedOrder(final FieldVectorPreservingVisitor visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { return walkInDefaultOrder(visitor, start, end); } /** * Visits (and possibly alters) all entries of this vector in default order * (increasing index). * * @param visitor the visitor to be used to process and modify the entries * of this vector * @return the value returned by {@link FieldVectorChangingVisitor#end()} * at the end of the walk * @since 3.3 */ public T walkInDefaultOrder(final FieldVectorChangingVisitor visitor) { final int dim = getDimension(); visitor.start(dim, 0, dim - 1); for (int i = 0; i < dim; i++) { setEntry(i, visitor.visit(i, getEntry(i))); } return visitor.end(); } /** * Visits (and possibly alters) some entries of this vector in default order * (increasing index). * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link FieldVectorChangingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.3 */ public T walkInDefaultOrder(final FieldVectorChangingVisitor visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { checkIndices(start, end); visitor.start(getDimension(), start, end); for (int i = start; i <= end; i++) { setEntry(i, visitor.visit(i, getEntry(i))); } return visitor.end(); } /** * Visits (and possibly alters) all entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor the visitor to be used to process the entries of this * vector * @return the value returned by {@link FieldVectorChangingVisitor#end()} * at the end of the walk * @since 3.3 */ public T walkInOptimizedOrder(final FieldVectorChangingVisitor visitor) { return walkInDefaultOrder(visitor); } /** * Visits (and possibly change) some entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link FieldVectorChangingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.3 */ public T walkInOptimizedOrder(final FieldVectorChangingVisitor visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { return walkInDefaultOrder(visitor, start, end); } /** {@inheritDoc} */ @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + ((field == null) ? 0 : field.hashCode()); result = prime * result + virtualSize; OpenIntToFieldHashMap.Iterator iter = entries.iterator(); while (iter.hasNext()) { iter.advance(); int temp = iter.value().hashCode(); result = prime * result + temp; } return result; } /** {@inheritDoc} */ @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (!(obj instanceof SparseFieldVector)) { return false; } @SuppressWarnings("unchecked") // OK, because "else if" check below ensures that // other must be the same type as this SparseFieldVector other = (SparseFieldVector) obj; if (field == null) { if (other.field != null) { return false; } } else if (!field.equals(other.field)) { return false; } if (virtualSize != other.virtualSize) { return false; } OpenIntToFieldHashMap.Iterator iter = entries.iterator(); while (iter.hasNext()) { iter.advance(); T test = other.getEntry(iter.key()); if (!test.equals(iter.value())) { return false; } } iter = other.getEntries().iterator(); while (iter.hasNext()) { iter.advance(); T test = iter.value(); if (!test.equals(getEntry(iter.key()))) { return false; } } return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy