All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optim.linear.SimplexSolver Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.optim.linear;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math3.exception.TooManyIterationsException;
import org.apache.commons.math3.optim.OptimizationData;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * Solves a linear problem using the "Two-Phase Simplex" method.
 * 

* The {@link SimplexSolver} supports the following {@link OptimizationData} data provided * as arguments to {@link #optimize(OptimizationData...)}: *

    *
  • objective function: {@link LinearObjectiveFunction} - mandatory
  • *
  • linear constraints {@link LinearConstraintSet} - mandatory
  • *
  • type of optimization: {@link org.apache.commons.math3.optim.nonlinear.scalar.GoalType GoalType} * - optional, default: {@link org.apache.commons.math3.optim.nonlinear.scalar.GoalType#MINIMIZE MINIMIZE}
  • *
  • whether to allow negative values as solution: {@link NonNegativeConstraint} - optional, default: true
  • *
  • pivot selection rule: {@link PivotSelectionRule} - optional, default {@link PivotSelectionRule#DANTZIG}
  • *
  • callback for the best solution: {@link SolutionCallback} - optional
  • *
  • maximum number of iterations: {@link org.apache.commons.math3.optim.MaxIter} - optional, default: {@link Integer#MAX_VALUE}
  • *
*

* Note: Depending on the problem definition, the default convergence criteria * may be too strict, resulting in {@link NoFeasibleSolutionException} or * {@link TooManyIterationsException}. In such a case it is advised to adjust these * criteria with more appropriate values, e.g. relaxing the epsilon value. *

* Default convergence criteria: *

    *
  • Algorithm convergence: 1e-6
  • *
  • Floating-point comparisons: 10 ulp
  • *
  • Cut-Off value: 1e-10
  • *
*

* The cut-off value has been introduced to handle the case of very small pivot elements * in the Simplex tableau, as these may lead to numerical instabilities and degeneracy. * Potential pivot elements smaller than this value will be treated as if they were zero * and are thus not considered by the pivot selection mechanism. The default value is safe * for many problems, but may need to be adjusted in case of very small coefficients * used in either the {@link LinearConstraint} or {@link LinearObjectiveFunction}. * * @since 2.0 */ public class SimplexSolver extends LinearOptimizer { /** Default amount of error to accept in floating point comparisons (as ulps). */ static final int DEFAULT_ULPS = 10; /** Default cut-off value. */ static final double DEFAULT_CUT_OFF = 1e-10; /** Default amount of error to accept for algorithm convergence. */ private static final double DEFAULT_EPSILON = 1.0e-6; /** Amount of error to accept for algorithm convergence. */ private final double epsilon; /** Amount of error to accept in floating point comparisons (as ulps). */ private final int maxUlps; /** * Cut-off value for entries in the tableau: values smaller than the cut-off * are treated as zero to improve numerical stability. */ private final double cutOff; /** The pivot selection method to use. */ private PivotSelectionRule pivotSelection; /** * The solution callback to access the best solution found so far in case * the optimizer fails to find an optimal solution within the iteration limits. */ private SolutionCallback solutionCallback; /** * Builds a simplex solver with default settings. */ public SimplexSolver() { this(DEFAULT_EPSILON, DEFAULT_ULPS, DEFAULT_CUT_OFF); } /** * Builds a simplex solver with a specified accepted amount of error. * * @param epsilon Amount of error to accept for algorithm convergence. */ public SimplexSolver(final double epsilon) { this(epsilon, DEFAULT_ULPS, DEFAULT_CUT_OFF); } /** * Builds a simplex solver with a specified accepted amount of error. * * @param epsilon Amount of error to accept for algorithm convergence. * @param maxUlps Amount of error to accept in floating point comparisons. */ public SimplexSolver(final double epsilon, final int maxUlps) { this(epsilon, maxUlps, DEFAULT_CUT_OFF); } /** * Builds a simplex solver with a specified accepted amount of error. * * @param epsilon Amount of error to accept for algorithm convergence. * @param maxUlps Amount of error to accept in floating point comparisons. * @param cutOff Values smaller than the cutOff are treated as zero. */ public SimplexSolver(final double epsilon, final int maxUlps, final double cutOff) { this.epsilon = epsilon; this.maxUlps = maxUlps; this.cutOff = cutOff; this.pivotSelection = PivotSelectionRule.DANTZIG; } /** * {@inheritDoc} * * @param optData Optimization data. In addition to those documented in * {@link LinearOptimizer#optimize(OptimizationData...) * LinearOptimizer}, this method will register the following data: *

    *
  • {@link SolutionCallback}
  • *
  • {@link PivotSelectionRule}
  • *
* * @return {@inheritDoc} * @throws TooManyIterationsException if the maximal number of iterations is exceeded. */ @Override public PointValuePair optimize(OptimizationData... optData) throws TooManyIterationsException { // Set up base class and perform computation. return super.optimize(optData); } /** * {@inheritDoc} * * @param optData Optimization data. * In addition to those documented in * {@link LinearOptimizer#parseOptimizationData(OptimizationData[]) * LinearOptimizer}, this method will register the following data: *
    *
  • {@link SolutionCallback}
  • *
  • {@link PivotSelectionRule}
  • *
*/ @Override protected void parseOptimizationData(OptimizationData... optData) { // Allow base class to register its own data. super.parseOptimizationData(optData); // reset the callback before parsing solutionCallback = null; for (OptimizationData data : optData) { if (data instanceof SolutionCallback) { solutionCallback = (SolutionCallback) data; continue; } if (data instanceof PivotSelectionRule) { pivotSelection = (PivotSelectionRule) data; continue; } } } /** * Returns the column with the most negative coefficient in the objective function row. * * @param tableau Simple tableau for the problem. * @return the column with the most negative coefficient. */ private Integer getPivotColumn(SimplexTableau tableau) { double minValue = 0; Integer minPos = null; for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) { final double entry = tableau.getEntry(0, i); // check if the entry is strictly smaller than the current minimum // do not use a ulp/epsilon check if (entry < minValue) { minValue = entry; minPos = i; // Bland's rule: chose the entering column with the lowest index if (pivotSelection == PivotSelectionRule.BLAND && isValidPivotColumn(tableau, i)) { break; } } } return minPos; } /** * Checks whether the given column is valid pivot column, i.e. will result * in a valid pivot row. *

* When applying Bland's rule to select the pivot column, it may happen that * there is no corresponding pivot row. This method will check if the selected * pivot column will return a valid pivot row. * * @param tableau simplex tableau for the problem * @param col the column to test * @return {@code true} if the pivot column is valid, {@code false} otherwise */ private boolean isValidPivotColumn(SimplexTableau tableau, int col) { for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) { final double entry = tableau.getEntry(i, col); // do the same check as in getPivotRow if (Precision.compareTo(entry, 0d, cutOff) > 0) { return true; } } return false; } /** * Returns the row with the minimum ratio as given by the minimum ratio test (MRT). * * @param tableau Simplex tableau for the problem. * @param col Column to test the ratio of (see {@link #getPivotColumn(SimplexTableau)}). * @return the row with the minimum ratio. */ private Integer getPivotRow(SimplexTableau tableau, final int col) { // create a list of all the rows that tie for the lowest score in the minimum ratio test List minRatioPositions = new ArrayList(); double minRatio = Double.MAX_VALUE; for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) { final double rhs = tableau.getEntry(i, tableau.getWidth() - 1); final double entry = tableau.getEntry(i, col); // only consider pivot elements larger than the cutOff threshold // selecting others may lead to degeneracy or numerical instabilities if (Precision.compareTo(entry, 0d, cutOff) > 0) { final double ratio = FastMath.abs(rhs / entry); // check if the entry is strictly equal to the current min ratio // do not use a ulp/epsilon check final int cmp = Double.compare(ratio, minRatio); if (cmp == 0) { minRatioPositions.add(i); } else if (cmp < 0) { minRatio = ratio; minRatioPositions.clear(); minRatioPositions.add(i); } } } if (minRatioPositions.size() == 0) { return null; } else if (minRatioPositions.size() > 1) { // there's a degeneracy as indicated by a tie in the minimum ratio test // 1. check if there's an artificial variable that can be forced out of the basis if (tableau.getNumArtificialVariables() > 0) { for (Integer row : minRatioPositions) { for (int i = 0; i < tableau.getNumArtificialVariables(); i++) { int column = i + tableau.getArtificialVariableOffset(); final double entry = tableau.getEntry(row, column); if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) { return row; } } } } // 2. apply Bland's rule to prevent cycling: // take the row for which the corresponding basic variable has the smallest index // // see http://www.stanford.edu/class/msande310/blandrule.pdf // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper) Integer minRow = null; int minIndex = tableau.getWidth(); for (Integer row : minRatioPositions) { final int basicVar = tableau.getBasicVariable(row); if (basicVar < minIndex) { minIndex = basicVar; minRow = row; } } return minRow; } return minRatioPositions.get(0); } /** * Runs one iteration of the Simplex method on the given model. * * @param tableau Simple tableau for the problem. * @throws TooManyIterationsException if the allowed number of iterations has been exhausted. * @throws UnboundedSolutionException if the model is found not to have a bounded solution. */ protected void doIteration(final SimplexTableau tableau) throws TooManyIterationsException, UnboundedSolutionException { incrementIterationCount(); Integer pivotCol = getPivotColumn(tableau); Integer pivotRow = getPivotRow(tableau, pivotCol); if (pivotRow == null) { throw new UnboundedSolutionException(); } tableau.performRowOperations(pivotCol, pivotRow); } /** * Solves Phase 1 of the Simplex method. * * @param tableau Simple tableau for the problem. * @throws TooManyIterationsException if the allowed number of iterations has been exhausted. * @throws UnboundedSolutionException if the model is found not to have a bounded solution. * @throws NoFeasibleSolutionException if there is no feasible solution? */ protected void solvePhase1(final SimplexTableau tableau) throws TooManyIterationsException, UnboundedSolutionException, NoFeasibleSolutionException { // make sure we're in Phase 1 if (tableau.getNumArtificialVariables() == 0) { return; } while (!tableau.isOptimal()) { doIteration(tableau); } // if W is not zero then we have no feasible solution if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) { throw new NoFeasibleSolutionException(); } } /** {@inheritDoc} */ @Override public PointValuePair doOptimize() throws TooManyIterationsException, UnboundedSolutionException, NoFeasibleSolutionException { // reset the tableau to indicate a non-feasible solution in case // we do not pass phase 1 successfully if (solutionCallback != null) { solutionCallback.setTableau(null); } final SimplexTableau tableau = new SimplexTableau(getFunction(), getConstraints(), getGoalType(), isRestrictedToNonNegative(), epsilon, maxUlps); solvePhase1(tableau); tableau.dropPhase1Objective(); // after phase 1, we are sure to have a feasible solution if (solutionCallback != null) { solutionCallback.setTableau(tableau); } while (!tableau.isOptimal()) { doIteration(tableau); } // check that the solution respects the nonNegative restriction in case // the epsilon/cutOff values are too large for the actual linear problem // (e.g. with very small constraint coefficients), the solver might actually // find a non-valid solution (with negative coefficients). final PointValuePair solution = tableau.getSolution(); if (isRestrictedToNonNegative()) { final double[] coeff = solution.getPoint(); for (int i = 0; i < coeff.length; i++) { if (Precision.compareTo(coeff[i], 0, epsilon) < 0) { throw new NoFeasibleSolutionException(); } } } return solution; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy