All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.util.CombinatoricsUtils Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.util;

import java.util.Iterator;
import java.util.concurrent.atomic.AtomicReference;

import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;

/**
 * Combinatorial utilities.
 *
 * @since 3.3
 */
public final class CombinatoricsUtils {

    /** All long-representable factorials */
    static final long[] FACTORIALS = new long[] {
                       1l,                  1l,                   2l,
                       6l,                 24l,                 120l,
                     720l,               5040l,               40320l,
                  362880l,            3628800l,            39916800l,
               479001600l,         6227020800l,         87178291200l,
           1307674368000l,     20922789888000l,     355687428096000l,
        6402373705728000l, 121645100408832000l, 2432902008176640000l };

    /** Stirling numbers of the second kind. */
    static final AtomicReference STIRLING_S2 = new AtomicReference (null);

    /** Private constructor (class contains only static methods). */
    private CombinatoricsUtils() {}


    /**
     * Returns an exact representation of the  Binomial
     * Coefficient, "{@code n choose k}", the number of
     * {@code k}-element subsets that can be selected from an
     * {@code n}-element set.
     * 

* Preconditions: *

    *
  • {@code 0 <= k <= n } (otherwise * {@code MathIllegalArgumentException} is thrown)
  • *
  • The result is small enough to fit into a {@code long}. The * largest value of {@code n} for which all coefficients are * {@code < Long.MAX_VALUE} is 66. If the computed value exceeds * {@code Long.MAX_VALUE} a {@code MathArithMeticException} is * thrown.
  • *

* * @param n the size of the set * @param k the size of the subsets to be counted * @return {@code n choose k} * @throws NotPositiveException if {@code n < 0}. * @throws NumberIsTooLargeException if {@code k > n}. * @throws MathArithmeticException if the result is too large to be * represented by a long integer. */ public static long binomialCoefficient(final int n, final int k) throws NotPositiveException, NumberIsTooLargeException, MathArithmeticException { CombinatoricsUtils.checkBinomial(n, k); if ((n == k) || (k == 0)) { return 1; } if ((k == 1) || (k == n - 1)) { return n; } // Use symmetry for large k if (k > n / 2) { return binomialCoefficient(n, n - k); } // We use the formula // (n choose k) = n! / (n-k)! / k! // (n choose k) == ((n-k+1)*...*n) / (1*...*k) // which could be written // (n choose k) == (n-1 choose k-1) * n / k long result = 1; if (n <= 61) { // For n <= 61, the naive implementation cannot overflow. int i = n - k + 1; for (int j = 1; j <= k; j++) { result = result * i / j; i++; } } else if (n <= 66) { // For n > 61 but n <= 66, the result cannot overflow, // but we must take care not to overflow intermediate values. int i = n - k + 1; for (int j = 1; j <= k; j++) { // We know that (result * i) is divisible by j, // but (result * i) may overflow, so we split j: // Filter out the gcd, d, so j/d and i/d are integer. // result is divisible by (j/d) because (j/d) // is relative prime to (i/d) and is a divisor of // result * (i/d). final long d = ArithmeticUtils.gcd(i, j); result = (result / (j / d)) * (i / d); i++; } } else { // For n > 66, a result overflow might occur, so we check // the multiplication, taking care to not overflow // unnecessary. int i = n - k + 1; for (int j = 1; j <= k; j++) { final long d = ArithmeticUtils.gcd(i, j); result = ArithmeticUtils.mulAndCheck(result / (j / d), i / d); i++; } } return result; } /** * Returns a {@code double} representation of the Binomial * Coefficient, "{@code n choose k}", the number of * {@code k}-element subsets that can be selected from an * {@code n}-element set. *

* Preconditions: *

    *
  • {@code 0 <= k <= n } (otherwise * {@code IllegalArgumentException} is thrown)
  • *
  • The result is small enough to fit into a {@code double}. The * largest value of {@code n} for which all coefficients are less than * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE, * Double.POSITIVE_INFINITY is returned
  • *

* * @param n the size of the set * @param k the size of the subsets to be counted * @return {@code n choose k} * @throws NotPositiveException if {@code n < 0}. * @throws NumberIsTooLargeException if {@code k > n}. * @throws MathArithmeticException if the result is too large to be * represented by a long integer. */ public static double binomialCoefficientDouble(final int n, final int k) throws NotPositiveException, NumberIsTooLargeException, MathArithmeticException { CombinatoricsUtils.checkBinomial(n, k); if ((n == k) || (k == 0)) { return 1d; } if ((k == 1) || (k == n - 1)) { return n; } if (k > n/2) { return binomialCoefficientDouble(n, n - k); } if (n < 67) { return binomialCoefficient(n,k); } double result = 1d; for (int i = 1; i <= k; i++) { result *= (double)(n - k + i) / (double)i; } return FastMath.floor(result + 0.5); } /** * Returns the natural {@code log} of the Binomial * Coefficient, "{@code n choose k}", the number of * {@code k}-element subsets that can be selected from an * {@code n}-element set. *

* Preconditions: *

    *
  • {@code 0 <= k <= n } (otherwise * {@code MathIllegalArgumentException} is thrown)
  • *

* * @param n the size of the set * @param k the size of the subsets to be counted * @return {@code n choose k} * @throws NotPositiveException if {@code n < 0}. * @throws NumberIsTooLargeException if {@code k > n}. * @throws MathArithmeticException if the result is too large to be * represented by a long integer. */ public static double binomialCoefficientLog(final int n, final int k) throws NotPositiveException, NumberIsTooLargeException, MathArithmeticException { CombinatoricsUtils.checkBinomial(n, k); if ((n == k) || (k == 0)) { return 0; } if ((k == 1) || (k == n - 1)) { return FastMath.log(n); } /* * For values small enough to do exact integer computation, * return the log of the exact value */ if (n < 67) { return FastMath.log(binomialCoefficient(n,k)); } /* * Return the log of binomialCoefficientDouble for values that will not * overflow binomialCoefficientDouble */ if (n < 1030) { return FastMath.log(binomialCoefficientDouble(n, k)); } if (k > n / 2) { return binomialCoefficientLog(n, n - k); } /* * Sum logs for values that could overflow */ double logSum = 0; // n!/(n-k)! for (int i = n - k + 1; i <= n; i++) { logSum += FastMath.log(i); } // divide by k! for (int i = 2; i <= k; i++) { logSum -= FastMath.log(i); } return logSum; } /** * Returns n!. Shorthand for {@code n} Factorial, the * product of the numbers {@code 1,...,n}. *

* Preconditions: *

    *
  • {@code n >= 0} (otherwise * {@code MathIllegalArgumentException} is thrown)
  • *
  • The result is small enough to fit into a {@code long}. The * largest value of {@code n} for which {@code n!} does not exceed * Long.MAX_VALUE} is 20. If the computed value exceeds {@code Long.MAX_VALUE} * an {@code MathArithMeticException } is thrown.
  • *
*

* * @param n argument * @return {@code n!} * @throws MathArithmeticException if the result is too large to be represented * by a {@code long}. * @throws NotPositiveException if {@code n < 0}. * @throws MathArithmeticException if {@code n > 20}: The factorial value is too * large to fit in a {@code long}. */ public static long factorial(final int n) throws NotPositiveException, MathArithmeticException { if (n < 0) { throw new NotPositiveException(LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER, n); } if (n > 20) { throw new MathArithmeticException(); } return FACTORIALS[n]; } /** * Compute n!, the * factorial of {@code n} (the product of the numbers 1 to n), as a * {@code double}. * The result should be small enough to fit into a {@code double}: The * largest {@code n} for which {@code n!} does not exceed * {@code Double.MAX_VALUE} is 170. If the computed value exceeds * {@code Double.MAX_VALUE}, {@code Double.POSITIVE_INFINITY} is returned. * * @param n Argument. * @return {@code n!} * @throws NotPositiveException if {@code n < 0}. */ public static double factorialDouble(final int n) throws NotPositiveException { if (n < 0) { throw new NotPositiveException(LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER, n); } if (n < 21) { return FACTORIALS[n]; } return FastMath.floor(FastMath.exp(CombinatoricsUtils.factorialLog(n)) + 0.5); } /** * Compute the natural logarithm of the factorial of {@code n}. * * @param n Argument. * @return {@code n!} * @throws NotPositiveException if {@code n < 0}. */ public static double factorialLog(final int n) throws NotPositiveException { if (n < 0) { throw new NotPositiveException(LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER, n); } if (n < 21) { return FastMath.log(FACTORIALS[n]); } double logSum = 0; for (int i = 2; i <= n; i++) { logSum += FastMath.log(i); } return logSum; } /** * Returns the * Stirling number of the second kind, "{@code S(n,k)}", the number of * ways of partitioning an {@code n}-element set into {@code k} non-empty * subsets. *

* The preconditions are {@code 0 <= k <= n } (otherwise * {@code NotPositiveException} is thrown) *

* @param n the size of the set * @param k the number of non-empty subsets * @return {@code S(n,k)} * @throws NotPositiveException if {@code k < 0}. * @throws NumberIsTooLargeException if {@code k > n}. * @throws MathArithmeticException if some overflow happens, typically for n exceeding 25 and * k between 20 and n-2 (S(n,n-1) is handled specifically and does not overflow) * @since 3.1 */ public static long stirlingS2(final int n, final int k) throws NotPositiveException, NumberIsTooLargeException, MathArithmeticException { if (k < 0) { throw new NotPositiveException(k); } if (k > n) { throw new NumberIsTooLargeException(k, n, true); } long[][] stirlingS2 = STIRLING_S2.get(); if (stirlingS2 == null) { // the cache has never been initialized, compute the first numbers // by direct recurrence relation // as S(26,9) = 11201516780955125625 is larger than Long.MAX_VALUE // we must stop computation at row 26 final int maxIndex = 26; stirlingS2 = new long[maxIndex][]; stirlingS2[0] = new long[] { 1l }; for (int i = 1; i < stirlingS2.length; ++i) { stirlingS2[i] = new long[i + 1]; stirlingS2[i][0] = 0; stirlingS2[i][1] = 1; stirlingS2[i][i] = 1; for (int j = 2; j < i; ++j) { stirlingS2[i][j] = j * stirlingS2[i - 1][j] + stirlingS2[i - 1][j - 1]; } } // atomically save the cache STIRLING_S2.compareAndSet(null, stirlingS2); } if (n < stirlingS2.length) { // the number is in the small cache return stirlingS2[n][k]; } else { // use explicit formula to compute the number without caching it if (k == 0) { return 0; } else if (k == 1 || k == n) { return 1; } else if (k == 2) { return (1l << (n - 1)) - 1l; } else if (k == n - 1) { return binomialCoefficient(n, 2); } else { // definition formula: note that this may trigger some overflow long sum = 0; long sign = ((k & 0x1) == 0) ? 1 : -1; for (int j = 1; j <= k; ++j) { sign = -sign; sum += sign * binomialCoefficient(k, j) * ArithmeticUtils.pow(j, n); if (sum < 0) { // there was an overflow somewhere throw new MathArithmeticException(LocalizedFormats.ARGUMENT_OUTSIDE_DOMAIN, n, 0, stirlingS2.length - 1); } } return sum / factorial(k); } } } /** * Returns an iterator whose range is the k-element subsets of {0, ..., n - 1} * represented as {@code int[]} arrays. *

* The arrays returned by the iterator are sorted in descending order and * they are visited in lexicographic order with significance from right to * left. For example, combinationsIterator(4, 2) returns an Iterator that * will generate the following sequence of arrays on successive calls to * {@code next()}:

* {@code [0, 1], [0, 2], [1, 2], [0, 3], [1, 3], [2, 3]} *

* If {@code k == 0} an Iterator containing an empty array is returned and * if {@code k == n} an Iterator containing [0, ..., n -1] is returned.

* * @param n Size of the set from which subsets are selected. * @param k Size of the subsets to be enumerated. * @return an {@link Iterator iterator} over the k-sets in n. * @throws NotPositiveException if {@code n < 0}. * @throws NumberIsTooLargeException if {@code k > n}. */ public static Iterator combinationsIterator(int n, int k) { return new Combinations(n, k).iterator(); } /** * Check binomial preconditions. * * @param n Size of the set. * @param k Size of the subsets to be counted. * @throws NotPositiveException if {@code n < 0}. * @throws NumberIsTooLargeException if {@code k > n}. */ public static void checkBinomial(final int n, final int k) throws NumberIsTooLargeException, NotPositiveException { if (n < k) { throw new NumberIsTooLargeException(LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER, k, n, true); } if (n < 0) { throw new NotPositiveException(LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER, n); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy