All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.ChiSquaredDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;

/**
 * Implementation of the chi-squared distribution.
 *
 * @see Chi-squared distribution (Wikipedia)
 * @see Chi-squared Distribution (MathWorld)
 */
public class ChiSquaredDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /** Serializable version identifier */
    private static final long serialVersionUID = -8352658048349159782L;
    /** Internal Gamma distribution. */
    private final GammaDistribution gamma;
    /** Inverse cumulative probability accuracy */
    private final double solverAbsoluteAccuracy;

    /**
     * Create a Chi-Squared distribution with the given degrees of freedom.
     *
     * @param degreesOfFreedom Degrees of freedom.
     */
    public ChiSquaredDistribution(double degreesOfFreedom) {
        this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Create a Chi-Squared distribution with the given degrees of freedom and
     * inverse cumulative probability accuracy.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param degreesOfFreedom Degrees of freedom. * @param inverseCumAccuracy the maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @since 2.1 */ public ChiSquaredDistribution(double degreesOfFreedom, double inverseCumAccuracy) { this(new Well19937c(), degreesOfFreedom, inverseCumAccuracy); } /** * Create a Chi-Squared distribution with the given degrees of freedom. * * @param rng Random number generator. * @param degreesOfFreedom Degrees of freedom. * @since 3.3 */ public ChiSquaredDistribution(RandomGenerator rng, double degreesOfFreedom) { this(rng, degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a Chi-Squared distribution with the given degrees of freedom and * inverse cumulative probability accuracy. * * @param rng Random number generator. * @param degreesOfFreedom Degrees of freedom. * @param inverseCumAccuracy the maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @since 3.1 */ public ChiSquaredDistribution(RandomGenerator rng, double degreesOfFreedom, double inverseCumAccuracy) { super(rng); gamma = new GammaDistribution(degreesOfFreedom / 2, 2); solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Access the number of degrees of freedom. * * @return the degrees of freedom. */ public double getDegreesOfFreedom() { return gamma.getShape() * 2.0; } /** {@inheritDoc} */ public double density(double x) { return gamma.density(x); } /** {@inheritDoc} **/ @Override public double logDensity(double x) { return gamma.logDensity(x); } /** {@inheritDoc} */ public double cumulativeProbability(double x) { return gamma.cumulativeProbability(x); } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For {@code k} degrees of freedom, the mean is {@code k}. */ public double getNumericalMean() { return getDegreesOfFreedom(); } /** * {@inheritDoc} * * @return {@code 2 * k}, where {@code k} is the number of degrees of freedom. */ public double getNumericalVariance() { return 2 * getDegreesOfFreedom(); } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the * degrees of freedom. * * @return zero. */ public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity no matter the * degrees of freedom. * * @return {@code Double.POSITIVE_INFINITY}. */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return true; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy