All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.FDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Beta;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the F-distribution.
 *
 * @see F-distribution (Wikipedia)
 * @see F-distribution (MathWorld)
 */
public class FDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /** Serializable version identifier. */
    private static final long serialVersionUID = -8516354193418641566L;
    /** The numerator degrees of freedom. */
    private final double numeratorDegreesOfFreedom;
    /** The numerator degrees of freedom. */
    private final double denominatorDegreesOfFreedom;
    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;
    /** Cached numerical variance */
    private double numericalVariance = Double.NaN;
    /** Whether or not the numerical variance has been calculated */
    private boolean numericalVarianceIsCalculated = false;

    /**
     * Creates an F distribution using the given degrees of freedom.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param numeratorDegreesOfFreedom Numerator degrees of freedom. * @param denominatorDegreesOfFreedom Denominator degrees of freedom. * @throws NotStrictlyPositiveException if * {@code numeratorDegreesOfFreedom <= 0} or * {@code denominatorDegreesOfFreedom <= 0}. */ public FDistribution(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom) throws NotStrictlyPositiveException { this(numeratorDegreesOfFreedom, denominatorDegreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates an F distribution using the given degrees of freedom * and inverse cumulative probability accuracy. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param numeratorDegreesOfFreedom Numerator degrees of freedom. * @param denominatorDegreesOfFreedom Denominator degrees of freedom. * @param inverseCumAccuracy the maximum absolute error in inverse * cumulative probability estimates. * @throws NotStrictlyPositiveException if * {@code numeratorDegreesOfFreedom <= 0} or * {@code denominatorDegreesOfFreedom <= 0}. * @since 2.1 */ public FDistribution(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom, double inverseCumAccuracy) throws NotStrictlyPositiveException { this(new Well19937c(), numeratorDegreesOfFreedom, denominatorDegreesOfFreedom, inverseCumAccuracy); } /** * Creates an F distribution. * * @param rng Random number generator. * @param numeratorDegreesOfFreedom Numerator degrees of freedom. * @param denominatorDegreesOfFreedom Denominator degrees of freedom. * @throws NotStrictlyPositiveException if {@code numeratorDegreesOfFreedom <= 0} or * {@code denominatorDegreesOfFreedom <= 0}. * @since 3.3 */ public FDistribution(RandomGenerator rng, double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom) throws NotStrictlyPositiveException { this(rng, numeratorDegreesOfFreedom, denominatorDegreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates an F distribution. * * @param rng Random number generator. * @param numeratorDegreesOfFreedom Numerator degrees of freedom. * @param denominatorDegreesOfFreedom Denominator degrees of freedom. * @param inverseCumAccuracy the maximum absolute error in inverse * cumulative probability estimates. * @throws NotStrictlyPositiveException if {@code numeratorDegreesOfFreedom <= 0} or * {@code denominatorDegreesOfFreedom <= 0}. * @since 3.1 */ public FDistribution(RandomGenerator rng, double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (numeratorDegreesOfFreedom <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM, numeratorDegreesOfFreedom); } if (denominatorDegreesOfFreedom <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM, denominatorDegreesOfFreedom); } this.numeratorDegreesOfFreedom = numeratorDegreesOfFreedom; this.denominatorDegreesOfFreedom = denominatorDegreesOfFreedom; solverAbsoluteAccuracy = inverseCumAccuracy; } /** * {@inheritDoc} * * @since 2.1 */ public double density(double x) { return FastMath.exp(logDensity(x)); } /** {@inheritDoc} **/ @Override public double logDensity(double x) { final double nhalf = numeratorDegreesOfFreedom / 2; final double mhalf = denominatorDegreesOfFreedom / 2; final double logx = FastMath.log(x); final double logn = FastMath.log(numeratorDegreesOfFreedom); final double logm = FastMath.log(denominatorDegreesOfFreedom); final double lognxm = FastMath.log(numeratorDegreesOfFreedom * x + denominatorDegreesOfFreedom); return nhalf * logn + nhalf * logx - logx + mhalf * logm - nhalf * lognxm - mhalf * lognxm - Beta.logBeta(nhalf, mhalf); } /** * {@inheritDoc} * * The implementation of this method is based on *

*/ public double cumulativeProbability(double x) { double ret; if (x <= 0) { ret = 0; } else { double n = numeratorDegreesOfFreedom; double m = denominatorDegreesOfFreedom; ret = Beta.regularizedBeta((n * x) / (m + n * x), 0.5 * n, 0.5 * m); } return ret; } /** * Access the numerator degrees of freedom. * * @return the numerator degrees of freedom. */ public double getNumeratorDegreesOfFreedom() { return numeratorDegreesOfFreedom; } /** * Access the denominator degrees of freedom. * * @return the denominator degrees of freedom. */ public double getDenominatorDegreesOfFreedom() { return denominatorDegreesOfFreedom; } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For denominator degrees of freedom parameter {@code b}, the mean is *
    *
  • if {@code b > 2} then {@code b / (b - 2)},
  • *
  • else undefined ({@code Double.NaN}). *
*/ public double getNumericalMean() { final double denominatorDF = getDenominatorDegreesOfFreedom(); if (denominatorDF > 2) { return denominatorDF / (denominatorDF - 2); } return Double.NaN; } /** * {@inheritDoc} * * For numerator degrees of freedom parameter {@code a} and denominator * degrees of freedom parameter {@code b}, the variance is *
    *
  • * if {@code b > 4} then * {@code [2 * b^2 * (a + b - 2)] / [a * (b - 2)^2 * (b - 4)]}, *
  • *
  • else undefined ({@code Double.NaN}). *
*/ public double getNumericalVariance() { if (!numericalVarianceIsCalculated) { numericalVariance = calculateNumericalVariance(); numericalVarianceIsCalculated = true; } return numericalVariance; } /** * used by {@link #getNumericalVariance()} * * @return the variance of this distribution */ protected double calculateNumericalVariance() { final double denominatorDF = getDenominatorDegreesOfFreedom(); if (denominatorDF > 4) { final double numeratorDF = getNumeratorDegreesOfFreedom(); final double denomDFMinusTwo = denominatorDF - 2; return ( 2 * (denominatorDF * denominatorDF) * (numeratorDF + denominatorDF - 2) ) / ( (numeratorDF * (denomDFMinusTwo * denomDFMinusTwo) * (denominatorDF - 4)) ); } return Double.NaN; } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return false; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy