All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.LevyDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Erf;
import org.apache.commons.math3.util.FastMath;

/**
 * This class implements the 
 * Lévy distribution.
 *
 * @since 3.2
 */
public class LevyDistribution extends AbstractRealDistribution {

    /** Serializable UID. */
    private static final long serialVersionUID = 20130314L;

    /** Location parameter. */
    private final double mu;

    /** Scale parameter. */
    private final double c;  // Setting this to 1 returns a cumProb of 1.0

    /** Half of c (for calculations). */
    private final double halfC;

    /**
     * Build a new instance.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param mu location parameter * @param c scale parameter * @since 3.4 */ public LevyDistribution(final double mu, final double c) { this(new Well19937c(), mu, c); } /** * Creates a LevyDistribution. * @param rng random generator to be used for sampling * @param mu location * @param c scale parameter */ public LevyDistribution(final RandomGenerator rng, final double mu, final double c) { super(rng); this.mu = mu; this.c = c; this.halfC = 0.5 * c; } /** {@inheritDoc} *

* From Wikipedia: The probability density function of the Lévy distribution * over the domain is *

*
    * f(x; μ, c) = √(c / 2π) * e-c / 2 (x - μ) / (x - μ)3/2
    * 
*

* For this distribution, {@code X}, this method returns {@code P(X < x)}. * If {@code x} is less than location parameter μ, {@code Double.NaN} is * returned, as in these cases the distribution is not defined. *

*/ public double density(final double x) { if (x < mu) { return Double.NaN; } final double delta = x - mu; final double f = halfC / delta; return FastMath.sqrt(f / FastMath.PI) * FastMath.exp(-f) /delta; } /** {@inheritDoc} * * See documentation of {@link #density(double)} for computation details. */ @Override public double logDensity(double x) { if (x < mu) { return Double.NaN; } final double delta = x - mu; final double f = halfC / delta; return 0.5 * FastMath.log(f / FastMath.PI) - f - FastMath.log(delta); } /** {@inheritDoc} *

* From Wikipedia: the cumulative distribution function is *

*
     * f(x; u, c) = erfc (√ (c / 2 (x - u )))
     * 
*/ public double cumulativeProbability(final double x) { if (x < mu) { return Double.NaN; } return Erf.erfc(FastMath.sqrt(halfC / (x - mu))); } /** {@inheritDoc} */ @Override public double inverseCumulativeProbability(final double p) throws OutOfRangeException { if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0, 1); } final double t = Erf.erfcInv(p); return mu + halfC / (t * t); } /** Get the scale parameter of the distribution. * @return scale parameter of the distribution */ public double getScale() { return c; } /** Get the location parameter of the distribution. * @return location parameter of the distribution */ public double getLocation() { return mu; } /** {@inheritDoc} */ public double getNumericalMean() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public double getNumericalVariance() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public double getSupportLowerBound() { return mu; } /** {@inheritDoc} */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { // there is a division by x-mu in the computation, so density // is not finite at lower bound, bound must be excluded return false; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { // upper bound is infinite, so it must be excluded return false; } /** {@inheritDoc} */ public boolean isSupportConnected() { return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy