All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.fitting.PolynomialCurveFitter Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 3.6.1
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting;

import java.util.Collection;

import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.linear.DiagonalMatrix;

/**
 * Fits points to a {@link
 * org.apache.commons.math3.analysis.polynomials.PolynomialFunction.Parametric polynomial}
 * function.
 * 
* The size of the {@link #withStartPoint(double[]) initial guess} array defines the * degree of the polynomial to be fitted. * They must be sorted in increasing order of the polynomial's degree. * The optimal values of the coefficients will be returned in the same order. * * @since 3.3 */ public class PolynomialCurveFitter extends AbstractCurveFitter { /** Parametric function to be fitted. */ private static final PolynomialFunction.Parametric FUNCTION = new PolynomialFunction.Parametric(); /** Initial guess. */ private final double[] initialGuess; /** Maximum number of iterations of the optimization algorithm. */ private final int maxIter; /** * Contructor used by the factory methods. * * @param initialGuess Initial guess. * @param maxIter Maximum number of iterations of the optimization algorithm. * @throws MathInternalError if {@code initialGuess} is {@code null}. */ private PolynomialCurveFitter(double[] initialGuess, int maxIter) { this.initialGuess = initialGuess; this.maxIter = maxIter; } /** * Creates a default curve fitter. * Zero will be used as initial guess for the coefficients, and the maximum * number of iterations of the optimization algorithm is set to * {@link Integer#MAX_VALUE}. * * @param degree Degree of the polynomial to be fitted. * @return a curve fitter. * * @see #withStartPoint(double[]) * @see #withMaxIterations(int) */ public static PolynomialCurveFitter create(int degree) { return new PolynomialCurveFitter(new double[degree + 1], Integer.MAX_VALUE); } /** * Configure the start point (initial guess). * @param newStart new start point (initial guess) * @return a new instance. */ public PolynomialCurveFitter withStartPoint(double[] newStart) { return new PolynomialCurveFitter(newStart.clone(), maxIter); } /** * Configure the maximum number of iterations. * @param newMaxIter maximum number of iterations * @return a new instance. */ public PolynomialCurveFitter withMaxIterations(int newMaxIter) { return new PolynomialCurveFitter(initialGuess, newMaxIter); } /** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations); if (initialGuess == null) { throw new MathInternalError(); } // Return a new least squares problem set up to fit a polynomial curve to the // observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(initialGuess). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy