All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.numbers.complex.Complex Maven / Gradle / Ivy

There is a newer version: 1.2
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.numbers.complex;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import java.util.function.DoubleUnaryOperator;

/**
 * Cartesian representation of a complex number, i.e. a number which has both a
 * real and imaginary part.
 *
 * 

This class is immutable. All arithmetic will create a new instance for the * result.

* *

Arithmetic in this class conforms to the C99 standard for complex numbers * defined in ISO/IEC 9899, Annex G. Methods have been named using the equivalent * method in ISO C99. The behavior for special cases is listed as defined in C99.

* *

For functions \( f \) which obey the conjugate equality \( conj(f(z)) = f(conj(z)) \), * the specifications for the upper half-plane imply the specifications for the lower * half-plane.

* *

For functions that are either odd, \( f(z) = -f(-z) \), or even, \( f(z) = f(-z) \), * the specifications for the first quadrant imply the specifications for the other three * quadrants.

* *

Special cases of branch cuts * for multivalued functions adopt the principle value convention from C99. Specials cases * from C99 that raise the "invalid" or "divide-by-zero" * floating-point * exceptions return the documented value without an explicit mechanism to notify * of the exception case, that is no exceptions are thrown during computations in-line with * the convention of the corresponding single-valued functions in * {@link java.lang.Math java.lang.Math}. * These cases are documented in the method special cases as "invalid" or "divide-by-zero" * floating-point operation. * Note: Invalid floating-point exception cases will result in a complex number where the * cardinality of NaN component parts has increased as a real or imaginary part could * not be computed and is set to NaN. * * @see * ISO/IEC 9899 - Programming languages - C */ public final class Complex implements Serializable { /** * A complex number representing \( i \), the square root of \( -1 \). * *

\( (0 + i 1) \). */ public static final Complex I = new Complex(0, 1); /** * A complex number representing one. * *

\( (1 + i 0) \). */ public static final Complex ONE = new Complex(1, 0); /** * A complex number representing zero. * *

\( (0 + i 0) \). */ public static final Complex ZERO = new Complex(0, 0); /** A complex number representing {@code NaN + i NaN}. */ private static final Complex NAN = new Complex(Double.NaN, Double.NaN); /** π/2. */ private static final double PI_OVER_2 = 0.5 * Math.PI; /** π/4. */ private static final double PI_OVER_4 = 0.25 * Math.PI; /** Natural logarithm of 2 (ln(2)). */ private static final double LN_2 = Math.log(2); /** Base 10 logarithm of 10 divided by 2 (log10(e)/2). */ private static final double LOG_10E_O_2 = Math.log10(Math.E) / 2; /** Base 10 logarithm of 2 (log10(2)). */ private static final double LOG10_2 = Math.log10(2); /** {@code 1/2}. */ private static final double HALF = 0.5; /** {@code sqrt(2)}. */ private static final double ROOT2 = 1.4142135623730951; /** {@code 1.0 / sqrt(2)}. * This is pre-computed to the closest double from the exact result. * It is 1 ULP different from 1.0 / Math.sqrt(2) but equal to Math.sqrt(2) / 2. */ private static final double ONE_OVER_ROOT2 = 0.7071067811865476; /** The bit representation of {@code -0.0}. */ private static final long NEGATIVE_ZERO_LONG_BITS = Double.doubleToLongBits(-0.0); /** Exponent offset in IEEE754 representation. */ private static final int EXPONENT_OFFSET = 1023; /** * Largest double-precision floating-point number such that * {@code 1 + EPSILON} is numerically equal to 1. This value is an upper * bound on the relative error due to rounding real numbers to double * precision floating-point numbers. * *

In IEEE 754 arithmetic, this is 2-53. * Copied from o.a.c.numbers.Precision. * * @see Machine epsilon */ private static final double EPSILON = Double.longBitsToDouble((EXPONENT_OFFSET - 53L) << 52); /** Mask to remove the sign bit from a long. */ private static final long UNSIGN_MASK = 0x7fff_ffff_ffff_ffffL; /** Mask to extract the 52-bit mantissa from a long representation of a double. */ private static final long MANTISSA_MASK = 0x000f_ffff_ffff_ffffL; /** The multiplier used to split the double value into hi and low parts. This must be odd * and a value of 2^s + 1 in the range {@code p/2 <= s <= p-1} where p is the number of * bits of precision of the floating point number. Here {@code s = 27}.*/ private static final double MULTIPLIER = 1.34217729E8; /** * Crossover point to switch computation for asin/acos factor A. * This has been updated from the 1.5 value used by Hull et al to 10 * as used in boost::math::complex. * @see Boost ticket 7290 */ private static final double A_CROSSOVER = 10.0; /** Crossover point to switch computation for asin/acos factor B. */ private static final double B_CROSSOVER = 0.6471; /** * The safe maximum double value {@code x} to avoid loss of precision in asin/acos. * Equal to sqrt(M) / 8 in Hull, et al (1997) with M the largest normalised floating-point value. */ private static final double SAFE_MAX = Math.sqrt(Double.MAX_VALUE) / 8; /** * The safe minimum double value {@code x} to avoid loss of precision/underflow in asin/acos. * Equal to sqrt(u) * 4 in Hull, et al (1997) with u the smallest normalised floating-point value. */ private static final double SAFE_MIN = Math.sqrt(Double.MIN_NORMAL) * 4; /** * The safe maximum double value {@code x} to avoid loss of precision in atanh. * Equal to sqrt(M) / 2 with M the largest normalised floating-point value. */ private static final double SAFE_UPPER = Math.sqrt(Double.MAX_VALUE) / 2; /** * The safe minimum double value {@code x} to avoid loss of precision/underflow in atanh. * Equal to sqrt(u) * 2 with u the smallest normalised floating-point value. */ private static final double SAFE_LOWER = Math.sqrt(Double.MIN_NORMAL) * 2; /** The safe maximum double value {@code x} to avoid overflow in sqrt. */ private static final double SQRT_SAFE_UPPER = Double.MAX_VALUE / 8; /** * A safe maximum double value {@code m} where {@code e^m} is not infinite. * This can be used when functions require approximations of sinh(x) or cosh(x) * when x is large using exp(x): *

     * sinh(x) = (e^x - e^-x) / 2 = sign(x) * e^|x| / 2
     * cosh(x) = (e^x + e^-x) / 2 = e^|x| / 2 
* *

This value can be used to approximate e^x using a product: * *

     * e^x = product_n (e^m) * e^(x-nm)
     * n = (int) x/m
     * e.g. e^2000 = e^m * e^m * e^(2000 - 2m) 
* *

The value should be below ln(max_value) ~ 709.783. * The value m is set to an integer for less error when subtracting m and chosen as * even (m=708) as it is used as a threshold in tanh with m/2. * *

The value is used to compute e^x multiplied by a small number avoiding * overflow (sinh/cosh) or a small number divided by e^x without underflow due to * infinite e^x (tanh). The following conditions are used: *

     * 0.5 * e^m * Double.MIN_VALUE * e^m * e^m = Infinity
     * 2.0 / e^m / e^m = 0.0 
*/ private static final double SAFE_EXP = 708; /** * The value of Math.exp(SAFE_EXP): e^708. * To be used in overflow/underflow safe products of e^m to approximate e^x where x > m. */ private static final double EXP_M = Math.exp(SAFE_EXP); /** 60 shifted 20-bits to align with the exponent of the upper 32-bits of a double. */ private static final int EXP_60 = 0x3c_00000; /** Represents an exponent of 500 in unbiased form shifted 20-bits to align with the upper 32-bits of a double. */ private static final int EXP_500 = 0x5f3_00000; /** Represents an exponent of 1024 in unbiased form (infinite or nan) * shifted 20-bits to align with the upper 32-bits of a double. */ private static final int EXP_1024 = 0x7ff_00000; /** Represents an exponent of -500 in unbiased form shifted 20-bits to align with the upper 32-bits of a double. */ private static final int EXP_NEG_500 = 0x20b_00000; /** 2^600. */ private static final double TWO_POW_600 = 0x1.0p+600; /** 2^-600. */ private static final double TWO_POW_NEG_600 = 0x1.0p-600; /** Serializable version identifier. */ private static final long serialVersionUID = 20180201L; /** * The size of the buffer for {@link #toString()}. * *

The longest double will require a sign, a maximum of 17 digits, the decimal place * and the exponent, e.g. for max value this is 24 chars: -1.7976931348623157e+308. * Set the buffer size to twice this and round up to a power of 2 thus * allowing for formatting characters. The size is 64. */ private static final int TO_STRING_SIZE = 64; /** The minimum number of characters in the format. This is 5, e.g. {@code "(0,0)"}. */ private static final int FORMAT_MIN_LEN = 5; /** {@link #toString() String representation}. */ private static final char FORMAT_START = '('; /** {@link #toString() String representation}. */ private static final char FORMAT_END = ')'; /** {@link #toString() String representation}. */ private static final char FORMAT_SEP = ','; /** The minimum number of characters before the separator. This is 2, e.g. {@code "(0"}. */ private static final int BEFORE_SEP = 2; /** The imaginary part. */ private final double imaginary; /** The real part. */ private final double real; /** * Define a constructor for a Complex. * This is used in functions that implement trigonomic identities. */ @FunctionalInterface private interface ComplexConstructor { /** * Create a complex number given the real and imaginary parts. * * @param real Real part. * @param imaginary Imaginary part. * @return {@code Complex} object. */ Complex create(double real, double imaginary); } /** * Private default constructor. * * @param real Real part. * @param imaginary Imaginary part. */ private Complex(double real, double imaginary) { this.real = real; this.imaginary = imaginary; } /** * Create a complex number given the real and imaginary parts. * * @param real Real part. * @param imaginary Imaginary part. * @return {@code Complex} number. */ public static Complex ofCartesian(double real, double imaginary) { return new Complex(real, imaginary); } /** * Creates a complex number from its polar representation using modulus {@code rho} (\( \rho \)) * and phase angle {@code theta} (\( \theta \)). * * \[ x = \rho \cos(\theta) \\ * y = \rho \sin(\theta) \] * *

Requires that {@code rho} is non-negative and non-NaN and {@code theta} is finite; * otherwise returns a complex with NaN real and imaginary parts. A {@code rho} value of * {@code -0.0} is considered negative and an invalid modulus. * *

A non-NaN complex number constructed using this method will satisfy the following * to within floating-point error when {@code theta} is in the range * \( -\pi\ \lt \theta \leq \pi \): * *

     *  Complex.ofPolar(rho, theta).abs() == rho
     *  Complex.ofPolar(rho, theta).arg() == theta
* *

If {@code rho} is infinite then the resulting parts may be infinite or NaN * following the rules for double arithmetic, for example:

* *
    *
  • {@code ofPolar(}\( -0.0 \){@code , }\( 0 \){@code ) = }\( \text{NaN} + i \text{NaN} \) *
  • {@code ofPolar(}\( 0.0 \){@code , }\( 0 \){@code ) = }\( 0 + i 0 \) *
  • {@code ofPolar(}\( 1 \){@code , }\( 0 \){@code ) = }\( 1 + i 0 \) *
  • {@code ofPolar(}\( 1 \){@code , }\( \pi \){@code ) = }\( -1 + i \sin(\pi) \) *
  • {@code ofPolar(}\( \infty \){@code , }\( \pi \){@code ) = }\( -\infty + i \infty \) *
  • {@code ofPolar(}\( \infty \){@code , }\( 0 \){@code ) = }\( -\infty + i \text{NaN} \) *
  • {@code ofPolar(}\( \infty \){@code , }\( -\frac{\pi}{4} \){@code ) = }\( \infty - i \infty \) *
  • {@code ofPolar(}\( \infty \){@code , }\( 5\frac{\pi}{4} \){@code ) = }\( -\infty - i \infty \) *
* *

This method is the functional equivalent of the C++ method {@code std::polar}. * * @param rho The modulus of the complex number. * @param theta The argument of the complex number. * @return {@code Complex} number. * @see Polar Coordinates */ public static Complex ofPolar(double rho, double theta) { // Require finite theta and non-negative, non-nan rho if (!Double.isFinite(theta) || negative(rho) || Double.isNaN(rho)) { return NAN; } final double x = rho * Math.cos(theta); final double y = rho * Math.sin(theta); return new Complex(x, y); } /** * Create a complex cis number. This is also known as the complex exponential: * * \[ \text{cis}(x) = e^{ix} = \cos(x) + i \sin(x) \] * * @param x {@code double} to build the cis number. * @return {@code Complex} cis number. * @see Cis */ public static Complex ofCis(double x) { return new Complex(Math.cos(x), Math.sin(x)); } /** * Returns a {@code Complex} instance representing the specified string {@code s}. * *

If {@code s} is {@code null}, then a {@code NullPointerException} is thrown. * *

The string must be in a format compatible with that produced by * {@link #toString() Complex.toString()}. * The format expects a start and end parentheses surrounding two numeric parts split * by a separator. Leading and trailing spaces are allowed around each numeric part. * Each numeric part is parsed using {@link Double#parseDouble(String)}. The parts * are interpreted as the real and imaginary parts of the complex number. * *

Examples of valid strings and the equivalent {@code Complex} are shown below: * *

     * "(0,0)"             = Complex.ofCartesian(0, 0)
     * "(0.0,0.0)"         = Complex.ofCartesian(0, 0)
     * "(-0.0, 0.0)"       = Complex.ofCartesian(-0.0, 0)
     * "(-1.23, 4.56)"     = Complex.ofCartesian(-1.23, 4.56)
     * "(1e300,-1.1e-2)"   = Complex.ofCartesian(1e300, -1.1e-2)
* * @param s String representation. * @return {@code Complex} number. * @throws NullPointerException if the string is null. * @throws NumberFormatException if the string does not contain a parsable complex number. * @see Double#parseDouble(String) * @see #toString() */ public static Complex parse(String s) { final int len = s.length(); if (len < FORMAT_MIN_LEN) { throw new NumberFormatException( parsingExceptionMsg("Input too short, expected format", FORMAT_START + "x" + FORMAT_SEP + "y" + FORMAT_END, s)); } // Confirm start: '(' if (s.charAt(0) != FORMAT_START) { throw new NumberFormatException( parsingExceptionMsg("Expected start delimiter", FORMAT_START, s)); } // Confirm end: ')' if (s.charAt(len - 1) != FORMAT_END) { throw new NumberFormatException( parsingExceptionMsg("Expected end delimiter", FORMAT_END, s)); } // Confirm separator ',' is between at least 2 characters from // either end: "(x,x)" // Count back from the end ignoring the last 2 characters. final int sep = s.lastIndexOf(FORMAT_SEP, len - 3); if (sep < BEFORE_SEP) { throw new NumberFormatException( parsingExceptionMsg("Expected separator between two numbers", FORMAT_SEP, s)); } // Should be no more separators if (s.indexOf(FORMAT_SEP, sep + 1) != -1) { throw new NumberFormatException( parsingExceptionMsg("Incorrect number of parts, expected only 2 using separator", FORMAT_SEP, s)); } // Try to parse the parts final String rePart = s.substring(1, sep); final double re; try { re = Double.parseDouble(rePart); } catch (final NumberFormatException ex) { throw new NumberFormatException( parsingExceptionMsg("Could not parse real part", rePart, s)); } final String imPart = s.substring(sep + 1, len - 1); final double im; try { im = Double.parseDouble(imPart); } catch (final NumberFormatException ex) { throw new NumberFormatException( parsingExceptionMsg("Could not parse imaginary part", imPart, s)); } return ofCartesian(re, im); } /** * Creates an exception message. * * @param message Message prefix. * @param error Input that caused the error. * @param s String representation. * @return A message. */ private static String parsingExceptionMsg(String message, Object error, String s) { final StringBuilder sb = new StringBuilder(100) .append(message) .append(" '").append(error) .append("' for input \"").append(s).append('"'); return sb.toString(); } /** * Gets the real part \( a \) of this complex number \( (a + i b) \). * * @return The real part. */ public double getReal() { return real; } /** * Gets the real part \( a \) of this complex number \( (a + i b) \). * *

This method is the equivalent of the C++ method {@code std::complex::real}. * * @return The real part. * @see #getReal() */ public double real() { return getReal(); } /** * Gets the imaginary part \( b \) of this complex number \( (a + i b) \). * * @return The imaginary part. */ public double getImaginary() { return imaginary; } /** * Gets the imaginary part \( b \) of this complex number \( (a + i b) \). * *

This method is the equivalent of the C++ method {@code std::complex::imag}. * * @return The imaginary part. * @see #getImaginary() */ public double imag() { return getImaginary(); } /** * Returns the absolute value of this complex number. This is also called complex norm, modulus, * or magnitude. * *

\[ \text{abs}(x + i y) = \sqrt{(x^2 + y^2)} \] * *

Special cases: * *

    *
  • {@code abs(x + iy) == abs(y + ix) == abs(x - iy)}. *
  • If {@code z} is ±∞ + iy for any y, returns +∞. *
  • If {@code z} is x + iNaN for non-infinite x, returns NaN. *
  • If {@code z} is x + i0, returns |x|. *
* *

The cases ensure that if either component is infinite then the result is positive * infinity. If either component is NaN and this is not {@link #isInfinite() infinite} then * the result is NaN. * *

This method follows the * ISO C Standard, Annex G, * in calculating the returned value without intermediate overflow or underflow. * *

The computed result will be within 1 ulp of the exact result. * * @return The absolute value. * @see #isInfinite() * @see #isNaN() * @see Complex modulus */ public double abs() { return abs(real, imaginary); } /** * Returns the absolute value of the complex number. *

abs(x + i y) = sqrt(x^2 + y^2)
* *

This should satisfy the special cases of the hypot function in ISO C99 F.9.4.3: * "The hypot functions compute the square root of the sum of the squares of x and y, * without undue overflow or underflow." * *

    *
  • hypot(x, y), hypot(y, x), and hypot(x, −y) are equivalent. *
  • hypot(x, ±0) is equivalent to |x|. *
  • hypot(±∞, y) returns +∞, even if y is a NaN. *
* *

This method is called by all methods that require the absolute value of the complex * number, e.g. abs(), sqrt() and log(). * * @param real Real part. * @param imaginary Imaginary part. * @return The absolute value. */ private static double abs(double real, double imaginary) { // Specialised implementation of hypot. // See NUMBERS-143 return hypot(real, imaginary); } /** * Returns the argument of this complex number. * *

The argument is the angle phi between the positive real axis and * the point representing this number in the complex plane. * The value returned is between \( -\pi \) (not inclusive) * and \( \pi \) (inclusive), with negative values returned for numbers with * negative imaginary parts. * *

If either real or imaginary part (or both) is NaN, then the result is NaN. * Infinite parts are handled as {@linkplain Math#atan2} handles them, * essentially treating finite parts as zero in the presence of an * infinite coordinate and returning a multiple of \( \frac{\pi}{4} \) depending on * the signs of the infinite parts. * *

This code follows the * ISO C Standard, Annex G, * in calculating the returned value using the {@code atan2(y, x)} method for complex * \( x + iy \). * * @return The argument of this complex number. * @see Math#atan2(double, double) */ public double arg() { // Delegate return Math.atan2(imaginary, real); } /** * Returns the squared norm value of this complex number. This is also called the absolute * square. * *

\[ \text{norm}(x + i y) = x^2 + y^2 \] * *

If either component is infinite then the result is positive infinity. If either * component is NaN and this is not {@link #isInfinite() infinite} then the result is NaN. * *

Note: This method may not return the same value as the square of {@link #abs()} as * that method uses an extended precision computation. * *

{@code norm()} can be used as a faster alternative than {@code abs()} for ranking by * magnitude. If used for ranking any overflow to infinity will create an equal ranking for * values that may be still distinguished by {@code abs()}. * * @return The square norm value. * @see #isInfinite() * @see #isNaN() * @see #abs() * @see Absolute square */ public double norm() { if (isInfinite()) { return Double.POSITIVE_INFINITY; } return real * real + imaginary * imaginary; } /** * Returns {@code true} if either the real or imaginary component of the complex number is NaN * and the complex number is not infinite. * *

Note that: *

    *
  • There is more than one complex number that can return {@code true}. *
  • Different representations of NaN can be distinguished by the * {@link #equals(Object) Complex.equals(Object)} method. *
* * @return {@code true} if this instance contains NaN and no infinite parts. * @see Double#isNaN(double) * @see #isInfinite() * @see #equals(Object) Complex.equals(Object) */ public boolean isNaN() { if (Double.isNaN(real) || Double.isNaN(imaginary)) { return !isInfinite(); } return false; } /** * Returns {@code true} if either real or imaginary component of the complex number is infinite. * *

Note: A complex number with at least one infinite part is regarded * as an infinity (even if its other part is a NaN). * * @return {@code true} if this instance contains an infinite value. * @see Double#isInfinite(double) */ public boolean isInfinite() { return Double.isInfinite(real) || Double.isInfinite(imaginary); } /** * Returns {@code true} if both real and imaginary component of the complex number are finite. * * @return {@code true} if this instance contains finite values. * @see Double#isFinite(double) */ public boolean isFinite() { return Double.isFinite(real) && Double.isFinite(imaginary); } /** * Returns the * conjugate * \( \overline{z} \) of this complex number \( z \). * *

\[ z = a + i b \\ * \overline{z} = a - i b \] * * @return The conjugate (\( \overline{z} \)) of this complex number. */ public Complex conj() { return new Complex(real, -imaginary); } /** * Returns a {@code Complex} whose value is the negation of both the real and imaginary parts * of complex number \( z \). * *

\[ z = a + i b \\ * -z = -a - i b \] * * @return \( -z \). */ public Complex negate() { return new Complex(-real, -imaginary); } /** * Returns the projection of this complex number onto the Riemann sphere. * *

\( z \) projects to \( z \), except that all complex infinities (even those * with one infinite part and one NaN part) project to positive infinity on the real axis. * * If \( z \) has an infinite part, then {@code z.proj()} shall be equivalent to: * *

return Complex.ofCartesian(Double.POSITIVE_INFINITY, Math.copySign(0.0, z.imag());
* * @return \( z \) projected onto the Riemann sphere. * @see #isInfinite() * @see * IEEE and ISO C standards: cproj */ public Complex proj() { if (isInfinite()) { return new Complex(Double.POSITIVE_INFINITY, Math.copySign(0.0, imaginary)); } return this; } /** * Returns a {@code Complex} whose value is {@code (this + addend)}. * Implements the formula: * *

\[ (a + i b) + (c + i d) = (a + c) + i (b + d) \] * * @param addend Value to be added to this complex number. * @return {@code this + addend}. * @see Complex Addition */ public Complex add(Complex addend) { return new Complex(real + addend.real, imaginary + addend.imaginary); } /** * Returns a {@code Complex} whose value is {@code (this + addend)}, * with {@code addend} interpreted as a real number. * Implements the formula: * *

\[ (a + i b) + c = (a + c) + i b \] * *

This method is included for compatibility with ISO C99 which defines arithmetic between * real-only and complex numbers.

* *

Note: This method preserves the sign of the imaginary component \( b \) if it is {@code -0.0}. * The sign would be lost if adding \( (c + i 0) \) using * {@link #add(Complex) add(Complex.ofCartesian(addend, 0))} since * {@code -0.0 + 0.0 = 0.0}. * * @param addend Value to be added to this complex number. * @return {@code this + addend}. * @see #add(Complex) * @see #ofCartesian(double, double) */ public Complex add(double addend) { return new Complex(real + addend, imaginary); } /** * Returns a {@code Complex} whose value is {@code (this + addend)}, * with {@code addend} interpreted as an imaginary number. * Implements the formula: * *

\[ (a + i b) + i d = a + i (b + d) \] * *

This method is included for compatibility with ISO C99 which defines arithmetic between * imaginary-only and complex numbers.

* *

Note: This method preserves the sign of the real component \( a \) if it is {@code -0.0}. * The sign would be lost if adding \( (0 + i d) \) using * {@link #add(Complex) add(Complex.ofCartesian(0, addend))} since * {@code -0.0 + 0.0 = 0.0}. * * @param addend Value to be added to this complex number. * @return {@code this + addend}. * @see #add(Complex) * @see #ofCartesian(double, double) */ public Complex addImaginary(double addend) { return new Complex(real, imaginary + addend); } /** * Returns a {@code Complex} whose value is {@code (this - subtrahend)}. * Implements the formula: * *

\[ (a + i b) - (c + i d) = (a - c) + i (b - d) \] * * @param subtrahend Value to be subtracted from this complex number. * @return {@code this - subtrahend}. * @see Complex Subtraction */ public Complex subtract(Complex subtrahend) { return new Complex(real - subtrahend.real, imaginary - subtrahend.imaginary); } /** * Returns a {@code Complex} whose value is {@code (this - subtrahend)}, * with {@code subtrahend} interpreted as a real number. * Implements the formula: * *

\[ (a + i b) - c = (a - c) + i b \] * *

This method is included for compatibility with ISO C99 which defines arithmetic between * real-only and complex numbers.

* * @param subtrahend Value to be subtracted from this complex number. * @return {@code this - subtrahend}. * @see #subtract(Complex) */ public Complex subtract(double subtrahend) { return new Complex(real - subtrahend, imaginary); } /** * Returns a {@code Complex} whose value is {@code (this - subtrahend)}, * with {@code subtrahend} interpreted as an imaginary number. * Implements the formula: * *

\[ (a + i b) - i d = a + i (b - d) \] * *

This method is included for compatibility with ISO C99 which defines arithmetic between * imaginary-only and complex numbers.

* * @param subtrahend Value to be subtracted from this complex number. * @return {@code this - subtrahend}. * @see #subtract(Complex) */ public Complex subtractImaginary(double subtrahend) { return new Complex(real, imaginary - subtrahend); } /** * Returns a {@code Complex} whose value is {@code (minuend - this)}, * with {@code minuend} interpreted as a real number. * Implements the formula: * \[ c - (a + i b) = (c - a) - i b \] * *

This method is included for compatibility with ISO C99 which defines arithmetic between * real-only and complex numbers.

* *

Note: This method inverts the sign of the imaginary component \( b \) if it is {@code 0.0}. * The sign would not be inverted if subtracting from \( c + i 0 \) using * {@link #subtract(Complex) Complex.ofCartesian(minuend, 0).subtract(this)} since * {@code 0.0 - 0.0 = 0.0}. * * @param minuend Value this complex number is to be subtracted from. * @return {@code minuend - this}. * @see #subtract(Complex) * @see #ofCartesian(double, double) */ public Complex subtractFrom(double minuend) { return new Complex(minuend - real, -imaginary); } /** * Returns a {@code Complex} whose value is {@code (this - subtrahend)}, * with {@code minuend} interpreted as an imaginary number. * Implements the formula: * \[ i d - (a + i b) = -a + i (d - b) \] * *

This method is included for compatibility with ISO C99 which defines arithmetic between * imaginary-only and complex numbers.

* *

Note: This method inverts the sign of the real component \( a \) if it is {@code 0.0}. * The sign would not be inverted if subtracting from \( 0 + i d \) using * {@link #subtract(Complex) Complex.ofCartesian(0, minuend).subtract(this)} since * {@code 0.0 - 0.0 = 0.0}. * * @param minuend Value this complex number is to be subtracted from. * @return {@code this - subtrahend}. * @see #subtract(Complex) * @see #ofCartesian(double, double) */ public Complex subtractFromImaginary(double minuend) { return new Complex(-real, minuend - imaginary); } /** * Returns a {@code Complex} whose value is {@code this * factor}. * Implements the formula: * *

\[ (a + i b)(c + i d) = (ac - bd) + i (ad + bc) \] * *

Recalculates to recover infinities as specified in C99 standard G.5.1. * * @param factor Value to be multiplied by this complex number. * @return {@code this * factor}. * @see Complex Muliplication */ public Complex multiply(Complex factor) { return multiply(real, imaginary, factor.real, factor.imaginary); } /** * Returns a {@code Complex} whose value is: *

     *  (a + i b)(c + i d) = (ac - bd) + i (ad + bc)
* *

Recalculates to recover infinities as specified in C99 standard G.5.1. * * @param re1 Real component of first number. * @param im1 Imaginary component of first number. * @param re2 Real component of second number. * @param im2 Imaginary component of second number. * @return (a + b i)(c + d i). */ private static Complex multiply(double re1, double im1, double re2, double im2) { double a = re1; double b = im1; double c = re2; double d = im2; final double ac = a * c; final double bd = b * d; final double ad = a * d; final double bc = b * c; double x = ac - bd; double y = ad + bc; // -------------- // NaN can occur if: // - any of (a,b,c,d) are NaN (for NaN or Infinite complex numbers) // - a multiplication of infinity by zero (ac,bd,ad,bc). // - a subtraction of infinity from infinity (e.g. ac - bd) // Note that (ac,bd,ad,bc) can be infinite due to overflow. // // Detect a NaN result and perform correction. // // Modification from the listing in ISO C99 G.5.1 (6) // Do not correct infinity multiplied by zero. This is left as NaN. // -------------- if (Double.isNaN(x) && Double.isNaN(y)) { // Recover infinities that computed as NaN+iNaN ... boolean recalc = false; if ((Double.isInfinite(a) || Double.isInfinite(b)) && isNotZero(c, d)) { // This complex is infinite. // "Box" the infinity and change NaNs in the other factor to 0. a = boxInfinity(a); b = boxInfinity(b); c = changeNaNtoZero(c); d = changeNaNtoZero(d); recalc = true; } if ((Double.isInfinite(c) || Double.isInfinite(d)) && isNotZero(a, b)) { // The other complex is infinite. // "Box" the infinity and change NaNs in the other factor to 0. c = boxInfinity(c); d = boxInfinity(d); a = changeNaNtoZero(a); b = changeNaNtoZero(b); recalc = true; } if (!recalc && (Double.isInfinite(ac) || Double.isInfinite(bd) || Double.isInfinite(ad) || Double.isInfinite(bc))) { // The result overflowed to infinity. // Recover infinities from overflow by changing NaNs to 0 ... a = changeNaNtoZero(a); b = changeNaNtoZero(b); c = changeNaNtoZero(c); d = changeNaNtoZero(d); recalc = true; } if (recalc) { x = Double.POSITIVE_INFINITY * (a * c - b * d); y = Double.POSITIVE_INFINITY * (a * d + b * c); } } return new Complex(x, y); } /** * Box values for the real or imaginary component of an infinite complex number. * Any infinite value will be returned as one. Non-infinite values will be returned as zero. * The sign is maintained. * *

     *  inf  =  1
     * -inf  = -1
     *  x    =  0
     * -x    = -0
     * 
* * @param component the component * @return The boxed value */ private static double boxInfinity(double component) { return Math.copySign(Double.isInfinite(component) ? 1.0 : 0.0, component); } /** * Checks if the complex number is not zero. * * @param real the real component * @param imaginary the imaginary component * @return true if the complex is not zero */ private static boolean isNotZero(double real, double imaginary) { // The use of equals is deliberate. // This method must distinguish NaN from zero thus ruling out: // (real != 0.0 || imaginary != 0.0) return !(real == 0.0 && imaginary == 0.0); } /** * Change NaN to zero preserving the sign; otherwise return the value. * * @param value the value * @return The new value */ private static double changeNaNtoZero(double value) { return Double.isNaN(value) ? Math.copySign(0.0, value) : value; } /** * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor} * interpreted as a real number. * Implements the formula: * *

\[ (a + i b) c = (ac) + i (bc) \] * *

This method is included for compatibility with ISO C99 which defines arithmetic between * real-only and complex numbers.

* *

Note: This method should be preferred over using * {@link #multiply(Complex) multiply(Complex.ofCartesian(factor, 0))}. Multiplication * can generate signed zeros if either {@code this} complex has zeros for the real * and/or imaginary component, or if the factor is zero. The summation of signed zeros * in {@link #multiply(Complex)} may create zeros in the result that differ in sign * from the equivalent call to multiply by a real-only number. * * @param factor Value to be multiplied by this complex number. * @return {@code this * factor}. * @see #multiply(Complex) */ public Complex multiply(double factor) { return new Complex(real * factor, imaginary * factor); } /** * Returns a {@code Complex} whose value is {@code this * factor}, with {@code factor} * interpreted as an imaginary number. * Implements the formula: * *

\[ (a + i b) id = (-bd) + i (ad) \] * *

This method can be used to compute the multiplication of this complex number \( z \) * by \( i \) using a factor with magnitude 1.0. This should be used in preference to * {@link #multiply(Complex) multiply(Complex.I)} with or without {@link #negate() negation}:

* * \[ iz = (-b + i a) \\ * -iz = (b - i a) \] * *

This method is included for compatibility with ISO C99 which defines arithmetic between * imaginary-only and complex numbers.

* *

Note: This method should be preferred over using * {@link #multiply(Complex) multiply(Complex.ofCartesian(0, factor))}. Multiplication * can generate signed zeros if either {@code this} complex has zeros for the real * and/or imaginary component, or if the factor is zero. The summation of signed zeros * in {@link #multiply(Complex)} may create zeros in the result that differ in sign * from the equivalent call to multiply by an imaginary-only number. * * @param factor Value to be multiplied by this complex number. * @return {@code this * factor}. * @see #multiply(Complex) */ public Complex multiplyImaginary(double factor) { return new Complex(-imaginary * factor, real * factor); } /** * Returns a {@code Complex} whose value is {@code (this / divisor)}. * Implements the formula: * *

\[ \frac{a + i b}{c + i d} = \frac{(ac + bd) + i (bc - ad)}{c^2+d^2} \] * *

Re-calculates NaN result values to recover infinities as specified in C99 standard G.5.1. * * @param divisor Value by which this complex number is to be divided. * @return {@code this / divisor}. * @see Complex Division */ public Complex divide(Complex divisor) { return divide(real, imaginary, divisor.real, divisor.imaginary); } /** * Returns a {@code Complex} whose value is: *

     * 
     *   a + i b     (ac + bd) + i (bc - ad)
     *   -------  =  -----------------------
     *   c + i d            c2 + d2
     * 
     * 
* *

Recalculates to recover infinities as specified in C99 * standard G.5.1. Method is fully in accordance with * C++11 standards for complex numbers.

* *

Note: In the event of divide by zero this method produces the same result * as dividing by a real-only zero using {@link #divide(double)}. * * @param re1 Real component of first number. * @param im1 Imaginary component of first number. * @param re2 Real component of second number. * @param im2 Imaginary component of second number. * @return (a + i b) / (c + i d). * @see Complex Division * @see #divide(double) */ private static Complex divide(double re1, double im1, double re2, double im2) { double a = re1; double b = im1; double c = re2; double d = im2; int ilogbw = 0; // Get the exponent to scale the divisor parts to the range [1, 2). final int exponent = getScale(c, d); if (exponent <= Double.MAX_EXPONENT) { ilogbw = exponent; c = Math.scalb(c, -ilogbw); d = Math.scalb(d, -ilogbw); } final double denom = c * c + d * d; // Note: Modification from the listing in ISO C99 G.5.1 (8): // Avoid overflow if a or b are very big. // Since (c, d) in the range [1, 2) the sum (ac + bd) could overflow // when (a, b) are both above (Double.MAX_VALUE / 4). The same applies to // (bc - ad) with large negative values. // Use the maximum exponent as an approximation to the magnitude. if (getMaxExponent(a, b) > Double.MAX_EXPONENT - 2) { ilogbw -= 2; a /= 4; b /= 4; } double x = Math.scalb((a * c + b * d) / denom, -ilogbw); double y = Math.scalb((b * c - a * d) / denom, -ilogbw); // Recover infinities and zeros that computed as NaN+iNaN // the only cases are nonzero/zero, infinite/finite, and finite/infinite, ... if (Double.isNaN(x) && Double.isNaN(y)) { if ((denom == 0.0) && (!Double.isNaN(a) || !Double.isNaN(b))) { // nonzero/zero // This case produces the same result as divide by a real-only zero // using Complex.divide(+/-0.0) x = Math.copySign(Double.POSITIVE_INFINITY, c) * a; y = Math.copySign(Double.POSITIVE_INFINITY, c) * b; } else if ((Double.isInfinite(a) || Double.isInfinite(b)) && Double.isFinite(c) && Double.isFinite(d)) { // infinite/finite a = boxInfinity(a); b = boxInfinity(b); x = Double.POSITIVE_INFINITY * (a * c + b * d); y = Double.POSITIVE_INFINITY * (b * c - a * d); } else if ((Double.isInfinite(c) || Double.isInfinite(d)) && Double.isFinite(a) && Double.isFinite(b)) { // finite/infinite c = boxInfinity(c); d = boxInfinity(d); x = 0.0 * (a * c + b * d); y = 0.0 * (b * c - a * d); } } return new Complex(x, y); } /** * Returns a {@code Complex} whose value is {@code (this / divisor)}, * with {@code divisor} interpreted as a real number. * Implements the formula: * *

\[ \frac{a + i b}{c} = \frac{a}{c} + i \frac{b}{c} \] * *

This method is included for compatibility with ISO C99 which defines arithmetic between * real-only and complex numbers.

* *

Note: This method should be preferred over using * {@link #divide(Complex) divide(Complex.ofCartesian(divisor, 0))}. Division * can generate signed zeros if {@code this} complex has zeros for the real * and/or imaginary component, or the divisor is infinite. The summation of signed zeros * in {@link #divide(Complex)} may create zeros in the result that differ in sign * from the equivalent call to divide by a real-only number. * * @param divisor Value by which this complex number is to be divided. * @return {@code this / divisor}. * @see #divide(Complex) */ public Complex divide(double divisor) { return new Complex(real / divisor, imaginary / divisor); } /** * Returns a {@code Complex} whose value is {@code (this / divisor)}, * with {@code divisor} interpreted as an imaginary number. * Implements the formula: * *

\[ \frac{a + i b}{id} = \frac{b}{d} - i \frac{a}{d} \] * *

This method is included for compatibility with ISO C99 which defines arithmetic between * imaginary-only and complex numbers.

* *

Note: This method should be preferred over using * {@link #divide(Complex) divide(Complex.ofCartesian(0, divisor))}. Division * can generate signed zeros if {@code this} complex has zeros for the real * and/or imaginary component, or the divisor is infinite. The summation of signed zeros * in {@link #divide(Complex)} may create zeros in the result that differ in sign * from the equivalent call to divide by an imaginary-only number. * *

Warning: This method will generate a different result from * {@link #divide(Complex) divide(Complex.ofCartesian(0, divisor))} if the divisor is zero. * In this case the divide method using a zero-valued Complex will produce the same result * as dividing by a real-only zero. The output from dividing by imaginary zero will create * infinite and NaN values in the same component parts as the output from * {@code this.divide(Complex.ZERO).multiplyImaginary(1)}, however the sign * of some infinite values may be negated. * * @param divisor Value by which this complex number is to be divided. * @return {@code this / divisor}. * @see #divide(Complex) * @see #divide(double) */ public Complex divideImaginary(double divisor) { return new Complex(imaginary / divisor, -real / divisor); } /** * Returns the * * exponential function of this complex number. * *

\[ \exp(z) = e^z \] * *

The exponential function of \( z \) is an entire function in the complex plane. * Special cases: * *

    *
  • {@code z.conj().exp() == z.exp().conj()}. *
  • If {@code z} is ±0 + i0, returns 1 + i0. *
  • If {@code z} is x + i∞ for finite x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is x + iNaN for finite x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is +∞ + i0, returns +∞ + i0. *
  • If {@code z} is −∞ + iy for finite y, returns +0 cis(y) (see {@link #ofCis(double)}). *
  • If {@code z} is +∞ + iy for finite nonzero y, returns +∞ cis(y). *
  • If {@code z} is −∞ + i∞, returns ±0 ± i0 (where the signs of the real and imaginary parts of the result are unspecified). *
  • If {@code z} is +∞ + i∞, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified; "invalid" floating-point operation). *
  • If {@code z} is −∞ + iNaN, returns ±0 ± i0 (where the signs of the real and imaginary parts of the result are unspecified). *
  • If {@code z} is +∞ + iNaN, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified). *
  • If {@code z} is NaN + i0, returns NaN + i0. *
  • If {@code z} is NaN + iy for all nonzero numbers y, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is NaN + iNaN, returns NaN + iNaN. *
* *

Implements the formula: * *

\[ \exp(x + iy) = e^x (\cos(y) + i \sin(y)) \] * * @return The exponential of this complex number. * @see Exp */ public Complex exp() { if (Double.isInfinite(real)) { // Set the scale factor applied to cis(y) double zeroOrInf; if (real < 0) { if (!Double.isFinite(imaginary)) { // (−∞ + i∞) or (−∞ + iNaN) returns (±0 ± i0) (where the signs of the // real and imaginary parts of the result are unspecified). // Here we preserve the conjugate equality. return new Complex(0, Math.copySign(0, imaginary)); } // (−∞ + iy) returns +0 cis(y), for finite y zeroOrInf = 0; } else { // (+∞ + i0) returns +∞ + i0. if (imaginary == 0) { return this; } // (+∞ + i∞) or (+∞ + iNaN) returns (±∞ + iNaN) and raises the invalid // floating-point exception (where the sign of the real part of the // result is unspecified). if (!Double.isFinite(imaginary)) { return new Complex(real, Double.NaN); } // (+∞ + iy) returns (+∞ cis(y)), for finite nonzero y. zeroOrInf = real; } return new Complex(zeroOrInf * Math.cos(imaginary), zeroOrInf * Math.sin(imaginary)); } else if (Double.isNaN(real)) { // (NaN + i0) returns (NaN + i0) // (NaN + iy) returns (NaN + iNaN) and optionally raises the invalid floating-point exception // (NaN + iNaN) returns (NaN + iNaN) return imaginary == 0 ? this : NAN; } else if (!Double.isFinite(imaginary)) { // (x + i∞) or (x + iNaN) returns (NaN + iNaN) and raises the invalid // floating-point exception, for finite x. return NAN; } // real and imaginary are finite. // Compute e^a * (cos(b) + i sin(b)). // Special case: // (±0 + i0) returns (1 + i0) final double exp = Math.exp(real); if (imaginary == 0) { return new Complex(exp, imaginary); } return new Complex(exp * Math.cos(imaginary), exp * Math.sin(imaginary)); } /** * Returns the * * natural logarithm of this complex number. * *

The natural logarithm of \( z \) is unbounded along the real axis and * in the range \( [-\pi, \pi] \) along the imaginary axis. The imaginary part of the * natural logarithm has a branch cut along the negative real axis \( (-infty,0] \). * Special cases: * *

    *
  • {@code z.conj().log() == z.log().conj()}. *
  • If {@code z} is −0 + i0, returns −∞ + iπ ("divide-by-zero" floating-point operation). *
  • If {@code z} is +0 + i0, returns −∞ + i0 ("divide-by-zero" floating-point operation). *
  • If {@code z} is x + i∞ for finite x, returns +∞ + iπ/2. *
  • If {@code z} is x + iNaN for finite x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is −∞ + iy for finite positive-signed y, returns +∞ + iπ. *
  • If {@code z} is +∞ + iy for finite positive-signed y, returns +∞ + i0. *
  • If {@code z} is −∞ + i∞, returns +∞ + i3π/4. *
  • If {@code z} is +∞ + i∞, returns +∞ + iπ/4. *
  • If {@code z} is ±∞ + iNaN, returns +∞ + iNaN. *
  • If {@code z} is NaN + iy for finite y, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is NaN + i∞, returns +∞ + iNaN. *
  • If {@code z} is NaN + iNaN, returns NaN + iNaN. *
* *

Implements the formula: * *

\[ \ln(z) = \ln |z| + i \arg(z) \] * *

where \( |z| \) is the absolute and \( \arg(z) \) is the argument. * *

The implementation is based on the method described in:

*
* T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang (1994) * Implementing complex elementary functions using exception handling. * ACM Transactions on Mathematical Software, Vol 20, No 2, pp 215-244. *
* * @return The natural logarithm of this complex number. * @see Math#log(double) * @see #abs() * @see #arg() * @see Log */ public Complex log() { return log(Math::log, HALF, LN_2, Complex::ofCartesian); } /** * Returns the base 10 * * common logarithm of this complex number. * *

The common logarithm of \( z \) is unbounded along the real axis and * in the range \( [-\pi, \pi] \) along the imaginary axis. The imaginary part of the * common logarithm has a branch cut along the negative real axis \( (-infty,0] \). * Special cases are as defined in the {@link #log() natural logarithm}: * *

Implements the formula: * *

\[ \log_{10}(z) = \log_{10} |z| + i \arg(z) \] * *

where \( |z| \) is the absolute and \( \arg(z) \) is the argument. * * @return The base 10 logarithm of this complex number. * @see Math#log10(double) * @see #abs() * @see #arg() */ public Complex log10() { return log(Math::log10, LOG_10E_O_2, LOG10_2, Complex::ofCartesian); } /** * Returns the logarithm of this complex number using the provided function. * Implements the formula: * *

     *   log(x + i y) = log(|x + i y|) + i arg(x + i y)
* *

Warning: The argument {@code logOf2} must be equal to {@code log(2)} using the * provided log function otherwise scaling using powers of 2 in the case of overflow * will be incorrect. This is provided as an internal optimisation. * * @param log Log function. * @param logOfeOver2 The log function applied to e, then divided by 2. * @param logOf2 The log function applied to 2. * @param constructor Constructor for the returned complex. * @return The logarithm of this complex number. * @see #abs() * @see #arg() */ private Complex log(DoubleUnaryOperator log, double logOfeOver2, double logOf2, ComplexConstructor constructor) { // Handle NaN if (Double.isNaN(real) || Double.isNaN(imaginary)) { // Return NaN unless infinite if (isInfinite()) { return constructor.create(Double.POSITIVE_INFINITY, Double.NaN); } // No-use of the input constructor return NAN; } // Returns the real part: // log(sqrt(x^2 + y^2)) // log(x^2 + y^2) / 2 // Compute with positive values double x = Math.abs(real); double y = Math.abs(imaginary); // Find the larger magnitude. if (x < y) { final double tmp = x; x = y; y = tmp; } if (x == 0) { // Handle zero: raises the ‘‘divide-by-zero’’ floating-point exception. return constructor.create(Double.NEGATIVE_INFINITY, negative(real) ? Math.copySign(Math.PI, imaginary) : imaginary); } double re; // This alters the implementation of Hull et al (1994) which used a standard // precision representation of |z|: sqrt(x*x + y*y). // This formula should use the same definition of the magnitude returned // by Complex.abs() which is a high precision computation with scaling. // The checks for overflow thus only require ensuring the output of |z| // will not overflow or underflow. if (x > HALF && x < ROOT2) { // x^2+y^2 close to 1. Use log1p(x^2+y^2 - 1) / 2. re = Math.log1p(x2y2m1(x, y)) * logOfeOver2; } else { // Check for over/underflow in |z| // When scaling: // log(a / b) = log(a) - log(b) // So initialise the result with the log of the scale factor. re = 0; if (x > Double.MAX_VALUE / 2) { // Potential overflow. if (isPosInfinite(x)) { // Handle infinity return constructor.create(x, arg()); } // Scale down. x /= 2; y /= 2; // log(2) re = logOf2; } else if (y < Double.MIN_NORMAL) { // Potential underflow. if (y == 0) { // Handle real only number return constructor.create(log.applyAsDouble(x), arg()); } // Scale up sub-normal numbers to make them normal by scaling by 2^54, // i.e. more than the mantissa digits. x *= 0x1.0p54; y *= 0x1.0p54; // log(2^-54) = -54 * log(2) re = -54 * logOf2; } re += log.applyAsDouble(abs(x, y)); } // All ISO C99 edge cases for the imaginary are satisfied by the Math library. return constructor.create(re, arg()); } /** * Returns the complex power of this complex number raised to the power of {@code x}. * Implements the formula: * *

\[ z^x = e^{x \ln(z)} \] * *

If this complex number is zero then this method returns zero if {@code x} is positive * in the real component and zero in the imaginary component; * otherwise it returns NaN + iNaN. * * @param x The exponent to which this complex number is to be raised. * @return This complex number raised to the power of {@code x}. * @see #log() * @see #multiply(Complex) * @see #exp() * @see Complex exponentiation * @see Power */ public Complex pow(Complex x) { if (real == 0 && imaginary == 0) { // This value is zero. Test the other. if (x.real > 0 && x.imaginary == 0) { // 0 raised to positive number is 0 return ZERO; } // 0 raised to anything else is NaN return NAN; } return log().multiply(x).exp(); } /** * Returns the complex power of this complex number raised to the power of {@code x}, * with {@code x} interpreted as a real number. * Implements the formula: * *

\[ z^x = e^{x \ln(z)} \] * *

If this complex number is zero then this method returns zero if {@code x} is positive; * otherwise it returns NaN + iNaN. * * @param x The exponent to which this complex number is to be raised. * @return This complex number raised to the power of {@code x}. * @see #log() * @see #multiply(double) * @see #exp() * @see #pow(Complex) * @see Power */ public Complex pow(double x) { if (real == 0 && imaginary == 0) { // This value is zero. Test the other. if (x > 0) { // 0 raised to positive number is 0 return ZERO; } // 0 raised to anything else is NaN return NAN; } return log().multiply(x).exp(); } /** * Returns the * * square root of this complex number. * *

\[ \sqrt{x + iy} = \frac{1}{2} \sqrt{2} \left( \sqrt{ \sqrt{x^2 + y^2} + x } + i\ \text{sgn}(y) \sqrt{ \sqrt{x^2 + y^2} - x } \right) \] * *

The square root of \( z \) is in the range \( [0, +\infty) \) along the real axis and * is unbounded along the imaginary axis. The imaginary part of the square root has a * branch cut along the negative real axis \( (-infty,0) \). Special cases: * *

    *
  • {@code z.conj().sqrt() == z.sqrt().conj()}. *
  • If {@code z} is ±0 + i0, returns +0 + i0. *
  • If {@code z} is x + i∞ for all x (including NaN), returns +∞ + i∞. *
  • If {@code z} is x + iNaN for finite x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is −∞ + iy for finite positive-signed y, returns +0 + i∞. *
  • If {@code z} is +∞ + iy for finite positive-signed y, returns +∞ + i0. *
  • If {@code z} is −∞ + iNaN, returns NaN ± i∞ (where the sign of the imaginary part of the result is unspecified). *
  • If {@code z} is +∞ + iNaN, returns +∞ + iNaN. *
  • If {@code z} is NaN + iy for finite y, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is NaN + iNaN, returns NaN + iNaN. *
* *

Implements the following algorithm to compute \( \sqrt{x + iy} \): *

    *
  1. Let \( t = \sqrt{2 (|x| + |x + iy|)} \) *
  2. if \( x \geq 0 \) return \( \frac{t}{2} + i \frac{y}{t} \) *
  3. else return \( \frac{|y|}{t} + i\ \text{sgn}(y) \frac{t}{2} \) *
* where: *
    *
  • \( |x| =\ \){@link Math#abs(double) abs}(x) *
  • \( |x + y i| =\ \){@link Complex#abs} *
  • \( \text{sgn}(y) =\ \){@link Math#copySign(double,double) copySign}(1.0, y) *
* *

The implementation is overflow and underflow safe based on the method described in:

*
* T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang (1994) * Implementing complex elementary functions using exception handling. * ACM Transactions on Mathematical Software, Vol 20, No 2, pp 215-244. *
* * @return The square root of this complex number. * @see Sqrt */ public Complex sqrt() { return sqrt(real, imaginary); } /** * Returns the square root of the complex number {@code sqrt(x + i y)}. * * @param real Real component. * @param imaginary Imaginary component. * @return The square root of the complex number. */ private static Complex sqrt(double real, double imaginary) { // Handle NaN if (Double.isNaN(real) || Double.isNaN(imaginary)) { // Check for infinite if (Double.isInfinite(imaginary)) { return new Complex(Double.POSITIVE_INFINITY, imaginary); } if (Double.isInfinite(real)) { if (real == Double.NEGATIVE_INFINITY) { return new Complex(Double.NaN, Math.copySign(Double.POSITIVE_INFINITY, imaginary)); } return new Complex(Double.POSITIVE_INFINITY, Double.NaN); } return NAN; } // Compute with positive values and determine sign at the end final double x = Math.abs(real); final double y = Math.abs(imaginary); // Compute double t; // This alters the implementation of Hull et al (1994) which used a standard // precision representation of |z|: sqrt(x*x + y*y). // This formula should use the same definition of the magnitude returned // by Complex.abs() which is a high precision computation with scaling. // Worry about overflow if 2 * (|z| + |x|) will overflow. // Worry about underflow if |z| or |x| are sub-normal components. if (inRegion(x, y, Double.MIN_NORMAL, SQRT_SAFE_UPPER)) { // No over/underflow t = Math.sqrt(2 * (abs(x, y) + x)); } else { // Potential over/underflow. First check infinites and real/imaginary only. // Check for infinite if (isPosInfinite(y)) { return new Complex(Double.POSITIVE_INFINITY, imaginary); } else if (isPosInfinite(x)) { if (real == Double.NEGATIVE_INFINITY) { return new Complex(0, Math.copySign(Double.POSITIVE_INFINITY, imaginary)); } return new Complex(Double.POSITIVE_INFINITY, Math.copySign(0, imaginary)); } else if (y == 0) { // Real only final double sqrtAbs = Math.sqrt(x); if (real < 0) { return new Complex(0, Math.copySign(sqrtAbs, imaginary)); } return new Complex(sqrtAbs, imaginary); } else if (x == 0) { // Imaginary only. This sets the two components to the same magnitude. // Note: In polar coordinates this does not happen: // real = sqrt(abs()) * Math.cos(arg() / 2) // imag = sqrt(abs()) * Math.sin(arg() / 2) // arg() / 2 = pi/4 and cos and sin should both return sqrt(2)/2 but // are different by 1 ULP. final double sqrtAbs = Math.sqrt(y) * ONE_OVER_ROOT2; return new Complex(sqrtAbs, Math.copySign(sqrtAbs, imaginary)); } else { // Over/underflow. // Full scaling is not required as this is done in the hypotenuse function. // Keep the number as big as possible for maximum precision in the second sqrt. // Note if we scale by an even power of 2, we can re-scale by sqrt of the number. // a = sqrt(b) // a = sqrt(b/4) * sqrt(4) double rescale; double sx; double sy; if (Math.max(x, y) > SQRT_SAFE_UPPER) { // Overflow. Scale down by 16 and rescale by sqrt(16). sx = x / 16; sy = y / 16; rescale = 4; } else { // Sub-normal numbers. Make them normal by scaling by 2^54, // i.e. more than the mantissa digits, and rescale by sqrt(2^54) = 2^27. sx = x * 0x1.0p54; sy = y * 0x1.0p54; rescale = 0x1.0p-27; } t = rescale * Math.sqrt(2 * (abs(sx, sy) + sx)); } } if (real >= 0) { return new Complex(t / 2, imaginary / t); } return new Complex(y / t, Math.copySign(t / 2, imaginary)); } /** * Returns the * * sine of this complex number. * *

\[ \sin(z) = \frac{1}{2} i \left( e^{-iz} - e^{iz} \right) \] * *

This is an odd function: \( \sin(z) = -\sin(-z) \). * The sine is an entire function and requires no branch cuts. * *

This is implemented using real \( x \) and imaginary \( y \) parts: * *

\[ \sin(x + iy) = \sin(x)\cosh(y) + i \cos(x)\sinh(y) \] * *

As per the C99 standard this function is computed using the trigonomic identity: * *

\[ \sin(z) = -i \sinh(iz) \] * * @return The sine of this complex number. * @see Sin */ public Complex sin() { // Define in terms of sinh // sin(z) = -i sinh(iz) // Multiply this number by I, compute sinh, then multiply by back return sinh(-imaginary, real, Complex::multiplyNegativeI); } /** * Returns the * * cosine of this complex number. * *

\[ \cos(z) = \frac{1}{2} \left( e^{iz} + e^{-iz} \right) \] * *

This is an even function: \( \cos(z) = \cos(-z) \). * The cosine is an entire function and requires no branch cuts. * *

This is implemented using real \( x \) and imaginary \( y \) parts: * *

\[ \cos(x + iy) = \cos(x)\cosh(y) - i \sin(x)\sinh(y) \] * *

As per the C99 standard this function is computed using the trigonomic identity: * *

\[ cos(z) = cosh(iz) \] * * @return The cosine of this complex number. * @see Cos */ public Complex cos() { // Define in terms of cosh // cos(z) = cosh(iz) // Multiply this number by I and compute cosh. return cosh(-imaginary, real, Complex::ofCartesian); } /** * Returns the * * tangent of this complex number. * *

\[ \tan(z) = \frac{i(e^{-iz} - e^{iz})}{e^{-iz} + e^{iz}} \] * *

This is an odd function: \( \tan(z) = -\tan(-z) \). * The tangent is an entire function and requires no branch cuts. * *

This is implemented using real \( x \) and imaginary \( y \) parts:

* \[ \tan(x + iy) = \frac{\sin(2x)}{\cos(2x)+\cosh(2y)} + i \frac{\sinh(2y)}{\cos(2x)+\cosh(2y)} \] * *

As per the C99 standard this function is computed using the trigonomic identity:

* \[ \tan(z) = -i \tanh(iz) \] * * @return The tangent of this complex number. * @see Tangent */ public Complex tan() { // Define in terms of tanh // tan(z) = -i tanh(iz) // Multiply this number by I, compute tanh, then multiply by back return tanh(-imaginary, real, Complex::multiplyNegativeI); } /** * Returns the * * inverse sine of this complex number. * *

\[ \sin^{-1}(z) = - i \left(\ln{iz + \sqrt{1 - z^2}}\right) \] * *

The inverse sine of \( z \) is unbounded along the imaginary axis and * in the range \( [-\pi, \pi] \) along the real axis. Special cases are handled * as if the operation is implemented using \( \sin^{-1}(z) = -i \sinh^{-1}(iz) \). * *

The inverse sine is a multivalued function and requires a branch cut in * the complex plane; the cut is conventionally placed at the line segments * \( (\infty,-1) \) and \( (1,\infty) \) of the real axis. * *

This is implemented using real \( x \) and imaginary \( y \) parts: * *

\[ \sin^{-1}(z) = \sin^{-1}(B) + i\ \text{sgn}(y)\ln \left(A + \sqrt{A^2-1} \right) \\ * A = \frac{1}{2} \left[ \sqrt{(x+1)^2+y^2} + \sqrt{(x-1)^2+y^2} \right] \\ * B = \frac{1}{2} \left[ \sqrt{(x+1)^2+y^2} - \sqrt{(x-1)^2+y^2} \right] \] * *

where \( \text{sgn}(y) \) is the sign function implemented using * {@link Math#copySign(double,double) copySign(1.0, y)}. * *

The implementation is based on the method described in:

*
* T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang (1997) * Implementing the complex Arcsine and Arccosine Functions using Exception Handling. * ACM Transactions on Mathematical Software, Vol 23, No 3, pp 299-335. *
* *

The code has been adapted from the Boost * {@code c++} implementation {@code }. * * @return The inverse sine of this complex number. * @see ArcSin */ public Complex asin() { return asin(real, imaginary, Complex::ofCartesian); } /** * Returns the inverse sine of the complex number. * *

This function exists to allow implementation of the identity * {@code asinh(z) = -i asin(iz)}. * *

Adapted from {@code }. * The original notice is shown below and the licence is shown in full in LICENSE.txt: *

     * (C) Copyright John Maddock 2005.
     * Distributed under the Boost Software License, Version 1.0. (See accompanying
     * file LICENSE.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
     * 
* * @param real Real part. * @param imaginary Imaginary part. * @param constructor Constructor. * @return The inverse sine of this complex number. */ private static Complex asin(final double real, final double imaginary, final ComplexConstructor constructor) { // Compute with positive values and determine sign at the end final double x = Math.abs(real); final double y = Math.abs(imaginary); // The result (without sign correction) double re; double im; // Handle C99 special cases if (Double.isNaN(x)) { if (isPosInfinite(y)) { re = x; im = y; } else { // No-use of the input constructor return NAN; } } else if (Double.isNaN(y)) { if (x == 0) { re = 0; im = y; } else if (isPosInfinite(x)) { re = y; im = x; } else { // No-use of the input constructor return NAN; } } else if (isPosInfinite(x)) { re = isPosInfinite(y) ? PI_OVER_4 : PI_OVER_2; im = x; } else if (isPosInfinite(y)) { re = 0; im = y; } else { // Special case for real numbers: if (y == 0 && x <= 1) { return constructor.create(Math.asin(real), imaginary); } final double xp1 = x + 1; final double xm1 = x - 1; if (inRegion(x, y, SAFE_MIN, SAFE_MAX)) { final double yy = y * y; final double r = Math.sqrt(xp1 * xp1 + yy); final double s = Math.sqrt(xm1 * xm1 + yy); final double a = 0.5 * (r + s); final double b = x / a; if (b <= B_CROSSOVER) { re = Math.asin(b); } else { final double apx = a + x; if (x <= 1) { re = Math.atan(x / Math.sqrt(0.5 * apx * (yy / (r + xp1) + (s - xm1)))); } else { re = Math.atan(x / (y * Math.sqrt(0.5 * (apx / (r + xp1) + apx / (s + xm1))))); } } if (a <= A_CROSSOVER) { double am1; if (x < 1) { am1 = 0.5 * (yy / (r + xp1) + yy / (s - xm1)); } else { am1 = 0.5 * (yy / (r + xp1) + (s + xm1)); } im = Math.log1p(am1 + Math.sqrt(am1 * (a + 1))); } else { im = Math.log(a + Math.sqrt(a * a - 1)); } } else { // Hull et al: Exception handling code from figure 4 if (y <= (EPSILON * Math.abs(xm1))) { if (x < 1) { re = Math.asin(x); im = y / Math.sqrt(xp1 * (1 - x)); } else { re = PI_OVER_2; if ((Double.MAX_VALUE / xp1) > xm1) { // xp1 * xm1 won't overflow: im = Math.log1p(xm1 + Math.sqrt(xp1 * xm1)); } else { im = LN_2 + Math.log(x); } } } else if (y <= SAFE_MIN) { // Hull et al: Assume x == 1. // True if: // E^2 > 8*sqrt(u) // // E = Machine epsilon: (1 + epsilon) = 1 // u = Double.MIN_NORMAL re = PI_OVER_2 - Math.sqrt(y); im = Math.sqrt(y); } else if (EPSILON * y - 1 >= x) { // Possible underflow: re = x / y; im = LN_2 + Math.log(y); } else if (x > 1) { re = Math.atan(x / y); final double xoy = x / y; im = LN_2 + Math.log(y) + 0.5 * Math.log1p(xoy * xoy); } else { final double a = Math.sqrt(1 + y * y); // Possible underflow: re = x / a; im = 0.5 * Math.log1p(2 * y * (y + a)); } } } return constructor.create(changeSign(re, real), changeSign(im, imaginary)); } /** * Returns the * * inverse cosine of this complex number. * *

\[ \cos^{-1}(z) = \frac{\pi}{2} + i \left(\ln{iz + \sqrt{1 - z^2}}\right) \] * *

The inverse cosine of \( z \) is in the range \( [0, \pi) \) along the real axis and * unbounded along the imaginary axis. Special cases: * *

    *
  • {@code z.conj().acos() == z.acos().conj()}. *
  • If {@code z} is ±0 + i0, returns π/2 − i0. *
  • If {@code z} is ±0 + iNaN, returns π/2 + iNaN. *
  • If {@code z} is x + i∞ for finite x, returns π/2 − i∞. *
  • If {@code z} is x + iNaN, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is −∞ + iy for positive-signed finite y, returns π − i∞. *
  • If {@code z} is +∞ + iy for positive-signed finite y, returns +0 − i∞. *
  • If {@code z} is −∞ + i∞, returns 3π/4 − i∞. *
  • If {@code z} is +∞ + i∞, returns π/4 − i∞. *
  • If {@code z} is ±∞ + iNaN, returns NaN ± i∞ where the sign of the imaginary part of the result is unspecified. *
  • If {@code z} is NaN + iy for finite y, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is NaN + i∞, returns NaN − i∞. *
  • If {@code z} is NaN + iNaN, returns NaN + iNaN. *
* *

The inverse cosine is a multivalued function and requires a branch cut in * the complex plane; the cut is conventionally placed at the line segments * \( (-\infty,-1) \) and \( (1,\infty) \) of the real axis. * *

This function is implemented using real \( x \) and imaginary \( y \) parts: * *

\[ \cos^{-1}(z) = \cos^{-1}(B) - i\ \text{sgn}(y) \ln\left(A + \sqrt{A^2-1}\right) \\ * A = \frac{1}{2} \left[ \sqrt{(x+1)^2+y^2} + \sqrt{(x-1)^2+y^2} \right] \\ * B = \frac{1}{2} \left[ \sqrt{(x+1)^2+y^2} - \sqrt{(x-1)^2+y^2} \right] \] * *

where \( \text{sgn}(y) \) is the sign function implemented using * {@link Math#copySign(double,double) copySign(1.0, y)}. * *

The implementation is based on the method described in:

*
* T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang (1997) * Implementing the complex Arcsine and Arccosine Functions using Exception Handling. * ACM Transactions on Mathematical Software, Vol 23, No 3, pp 299-335. *
* *

The code has been adapted from the Boost * {@code c++} implementation {@code }. * * @return The inverse cosine of this complex number. * @see ArcCos */ public Complex acos() { return acos(real, imaginary, Complex::ofCartesian); } /** * Returns the inverse cosine of the complex number. * *

This function exists to allow implementation of the identity * {@code acosh(z) = +-i acos(z)}. * *

Adapted from {@code }. * The original notice is shown below and the licence is shown in full in LICENSE.txt: *

     * (C) Copyright John Maddock 2005.
     * Distributed under the Boost Software License, Version 1.0. (See accompanying
     * file LICENSE.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
     * 
* * @param real Real part. * @param imaginary Imaginary part. * @param constructor Constructor. * @return The inverse cosine of the complex number. */ private static Complex acos(final double real, final double imaginary, final ComplexConstructor constructor) { // Compute with positive values and determine sign at the end final double x = Math.abs(real); final double y = Math.abs(imaginary); // The result (without sign correction) double re; double im; // Handle C99 special cases if (isPosInfinite(x)) { if (isPosInfinite(y)) { re = PI_OVER_4; im = y; } else if (Double.isNaN(y)) { // sign of the imaginary part of the result is unspecified return constructor.create(imaginary, real); } else { re = 0; im = Double.POSITIVE_INFINITY; } } else if (Double.isNaN(x)) { if (isPosInfinite(y)) { return constructor.create(x, -imaginary); } // No-use of the input constructor return NAN; } else if (isPosInfinite(y)) { re = PI_OVER_2; im = y; } else if (Double.isNaN(y)) { return constructor.create(x == 0 ? PI_OVER_2 : y, y); } else { // Special case for real numbers: if (y == 0 && x <= 1) { return constructor.create(x == 0 ? PI_OVER_2 : Math.acos(real), -imaginary); } final double xp1 = x + 1; final double xm1 = x - 1; if (inRegion(x, y, SAFE_MIN, SAFE_MAX)) { final double yy = y * y; final double r = Math.sqrt(xp1 * xp1 + yy); final double s = Math.sqrt(xm1 * xm1 + yy); final double a = 0.5 * (r + s); final double b = x / a; if (b <= B_CROSSOVER) { re = Math.acos(b); } else { final double apx = a + x; if (x <= 1) { re = Math.atan(Math.sqrt(0.5 * apx * (yy / (r + xp1) + (s - xm1))) / x); } else { re = Math.atan((y * Math.sqrt(0.5 * (apx / (r + xp1) + apx / (s + xm1)))) / x); } } if (a <= A_CROSSOVER) { double am1; if (x < 1) { am1 = 0.5 * (yy / (r + xp1) + yy / (s - xm1)); } else { am1 = 0.5 * (yy / (r + xp1) + (s + xm1)); } im = Math.log1p(am1 + Math.sqrt(am1 * (a + 1))); } else { im = Math.log(a + Math.sqrt(a * a - 1)); } } else { // Hull et al: Exception handling code from figure 6 if (y <= (EPSILON * Math.abs(xm1))) { if (x < 1) { re = Math.acos(x); im = y / Math.sqrt(xp1 * (1 - x)); } else { // This deviates from Hull et al's paper as per // https://svn.boost.org/trac/boost/ticket/7290 if ((Double.MAX_VALUE / xp1) > xm1) { // xp1 * xm1 won't overflow: re = y / Math.sqrt(xm1 * xp1); im = Math.log1p(xm1 + Math.sqrt(xp1 * xm1)); } else { re = y / x; im = LN_2 + Math.log(x); } } } else if (y <= SAFE_MIN) { // Hull et al: Assume x == 1. // True if: // E^2 > 8*sqrt(u) // // E = Machine epsilon: (1 + epsilon) = 1 // u = Double.MIN_NORMAL re = Math.sqrt(y); im = Math.sqrt(y); } else if (EPSILON * y - 1 >= x) { re = PI_OVER_2; im = LN_2 + Math.log(y); } else if (x > 1) { re = Math.atan(y / x); final double xoy = x / y; im = LN_2 + Math.log(y) + 0.5 * Math.log1p(xoy * xoy); } else { re = PI_OVER_2; final double a = Math.sqrt(1 + y * y); im = 0.5 * Math.log1p(2 * y * (y + a)); } } } return constructor.create(negative(real) ? Math.PI - re : re, negative(imaginary) ? im : -im); } /** * Returns the * * inverse tangent of this complex number. * *

\[ \tan^{-1}(z) = \frac{i}{2} \ln \left( \frac{i + z}{i - z} \right) \] * *

The inverse hyperbolic tangent of \( z \) is unbounded along the imaginary axis and * in the range \( [-\pi/2, \pi/2] \) along the real axis. * *

The inverse tangent is a multivalued function and requires a branch cut in * the complex plane; the cut is conventionally placed at the line segments * \( (i \infty,-i] \) and \( [i,i \infty) \) of the imaginary axis. * *

As per the C99 standard this function is computed using the trigonomic identity: * \[ \tan^{-1}(z) = -i \tanh^{-1}(iz) \] * * @return The inverse tangent of this complex number. * @see ArcTan */ public Complex atan() { // Define in terms of atanh // atan(z) = -i atanh(iz) // Multiply this number by I, compute atanh, then multiply by back return atanh(-imaginary, real, Complex::multiplyNegativeI); } /** * Returns the * * hyperbolic sine of this complex number. * *

\[ \sinh(z) = \frac{1}{2} \left( e^{z} - e^{-z} \right) \] * *

The hyperbolic sine of \( z \) is an entire function in the complex plane * and is periodic with respect to the imaginary component with period \( 2\pi i \). * Special cases: * *

    *
  • {@code z.conj().sinh() == z.sinh().conj()}. *
  • This is an odd function: \( \sinh(z) = -\sinh(-z) \). *
  • If {@code z} is +0 + i0, returns +0 + i0. *
  • If {@code z} is +0 + i∞, returns ±0 + iNaN (where the sign of the real part of the result is unspecified; "invalid" floating-point operation). *
  • If {@code z} is +0 + iNaN, returns ±0 + iNaN (where the sign of the real part of the result is unspecified). *
  • If {@code z} is x + i∞ for positive finite x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is x + iNaN for finite nonzero x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is +∞ + i0, returns +∞ + i0. *
  • If {@code z} is +∞ + iy for positive finite y, returns +∞ cis(y) (see {@link #ofCis(double)}. *
  • If {@code z} is +∞ + i∞, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified; "invalid" floating-point operation). *
  • If {@code z} is +∞ + iNaN, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified). *
  • If {@code z} is NaN + i0, returns NaN + i0. *
  • If {@code z} is NaN + iy for all nonzero numbers y, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is NaN + iNaN, returns NaN + iNaN. *
* *

This is implemented using real \( x \) and imaginary \( y \) parts: * *

\[ \sinh(x + iy) = \sinh(x)\cos(y) + i \cosh(x)\sin(y) \] * * @return The hyperbolic sine of this complex number. * @see Sinh */ public Complex sinh() { return sinh(real, imaginary, Complex::ofCartesian); } /** * Returns the hyperbolic sine of the complex number. * *

This function exists to allow implementation of the identity * {@code sin(z) = -i sinh(iz)}.

* * @param real Real part. * @param imaginary Imaginary part. * @param constructor Constructor. * @return The hyperbolic sine of the complex number. */ private static Complex sinh(double real, double imaginary, ComplexConstructor constructor) { if (Double.isInfinite(real) && !Double.isFinite(imaginary)) { return constructor.create(real, Double.NaN); } if (real == 0) { // Imaginary-only sinh(iy) = i sin(y). if (Double.isFinite(imaginary)) { // Maintain periodic property with respect to the imaginary component. // sinh(+/-0.0) * cos(+/-x) = +/-0 * cos(x) return constructor.create(changeSign(real, Math.cos(imaginary)), Math.sin(imaginary)); } // If imaginary is inf/NaN the sign of the real part is unspecified. // Returning the same real value maintains the conjugate equality. // It is not possible to also maintain the odd function (hence the unspecified sign). return constructor.create(real, Double.NaN); } if (imaginary == 0) { // Real-only sinh(x). return constructor.create(Math.sinh(real), imaginary); } final double x = Math.abs(real); if (x > SAFE_EXP) { // Approximate sinh/cosh(x) using exp^|x| / 2 return coshsinh(x, real, imaginary, true, constructor); } // No overflow of sinh/cosh return constructor.create(Math.sinh(real) * Math.cos(imaginary), Math.cosh(real) * Math.sin(imaginary)); } /** * Returns the * * hyperbolic cosine of this complex number. * *

\[ \cosh(z) = \frac{1}{2} \left( e^{z} + e^{-z} \right) \] * *

The hyperbolic cosine of \( z \) is an entire function in the complex plane * and is periodic with respect to the imaginary component with period \( 2\pi i \). * Special cases: * *

    *
  • {@code z.conj().cosh() == z.cosh().conj()}. *
  • This is an even function: \( \cosh(z) = \cosh(-z) \). *
  • If {@code z} is +0 + i0, returns 1 + i0. *
  • If {@code z} is +0 + i∞, returns NaN ± i0 (where the sign of the imaginary part of the result is unspecified; "invalid" floating-point operation). *
  • If {@code z} is +0 + iNaN, returns NaN ± i0 (where the sign of the imaginary part of the result is unspecified). *
  • If {@code z} is x + i∞ for finite nonzero x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is x + iNaN for finite nonzero x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is +∞ + i0, returns +∞ + i0. *
  • If {@code z} is +∞ + iy for finite nonzero y, returns +∞ cis(y) (see {@link #ofCis(double)}). *
  • If {@code z} is +∞ + i∞, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified). *
  • If {@code z} is +∞ + iNaN, returns +∞ + iNaN. *
  • If {@code z} is NaN + i0, returns NaN ± i0 (where the sign of the imaginary part of the result is unspecified). *
  • If {@code z} is NaN + iy for all nonzero numbers y, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is NaN + iNaN, returns NaN + iNaN. *
* *

This is implemented using real \( x \) and imaginary \( y \) parts: * *

\[ \cosh(x + iy) = \cosh(x)\cos(y) + i \sinh(x)\sin(y) \] * * @return The hyperbolic cosine of this complex number. * @see Cosh */ public Complex cosh() { return cosh(real, imaginary, Complex::ofCartesian); } /** * Returns the hyperbolic cosine of the complex number. * *

This function exists to allow implementation of the identity * {@code cos(z) = cosh(iz)}.

* * @param real Real part. * @param imaginary Imaginary part. * @param constructor Constructor. * @return The hyperbolic cosine of the complex number. */ private static Complex cosh(double real, double imaginary, ComplexConstructor constructor) { // ISO C99: Preserve the even function by mapping to positive // f(z) = f(-z) if (Double.isInfinite(real) && !Double.isFinite(imaginary)) { return constructor.create(Math.abs(real), Double.NaN); } if (real == 0) { // Imaginary-only cosh(iy) = cos(y). if (Double.isFinite(imaginary)) { // Maintain periodic property with respect to the imaginary component. // sinh(+/-0.0) * sin(+/-x) = +/-0 * sin(x) return constructor.create(Math.cos(imaginary), changeSign(real, Math.sin(imaginary))); } // If imaginary is inf/NaN the sign of the imaginary part is unspecified. // Although not required by C99 changing the sign maintains the conjugate equality. // It is not possible to also maintain the even function (hence the unspecified sign). return constructor.create(Double.NaN, changeSign(real, imaginary)); } if (imaginary == 0) { // Real-only cosh(x). // Change sign to preserve conjugate equality and even function. // sin(+/-0) * sinh(+/-x) = +/-0 * +/-a (sinh is monotonic and same sign) // => change the sign of imaginary using real. Handles special case of infinite real. // If real is NaN the sign of the imaginary part is unspecified. return constructor.create(Math.cosh(real), changeSign(imaginary, real)); } final double x = Math.abs(real); if (x > SAFE_EXP) { // Approximate sinh/cosh(x) using exp^|x| / 2 return coshsinh(x, real, imaginary, false, constructor); } // No overflow of sinh/cosh return constructor.create(Math.cosh(real) * Math.cos(imaginary), Math.sinh(real) * Math.sin(imaginary)); } /** * Compute cosh or sinh when the absolute real component |x| is large. In this case * cosh(x) and sinh(x) can be approximated by exp(|x|) / 2: * *

     * cosh(x+iy) real = (e^|x| / 2) * cos(y)
     * cosh(x+iy) imag = (e^|x| / 2) * sin(y) * sign(x)
     * sinh(x+iy) real = (e^|x| / 2) * cos(y) * sign(x)
     * sinh(x+iy) imag = (e^|x| / 2) * sin(y)
     * 
* * @param x Absolute real component |x|. * @param real Real part (x). * @param imaginary Imaginary part (y). * @param sinh Set to true to compute sinh, otherwise cosh. * @param constructor Constructor. * @return The hyperbolic sine/cosine of the complex number. */ private static Complex coshsinh(double x, double real, double imaginary, boolean sinh, ComplexConstructor constructor) { // Always require the cos and sin. double re = Math.cos(imaginary); double im = Math.sin(imaginary); // Compute the correct function if (sinh) { re = changeSign(re, real); } else { im = changeSign(im, real); } // Multiply by (e^|x| / 2). // Overflow safe computation since sin/cos can be very small allowing a result // when e^x overflows: e^x / 2 = (e^m / 2) * e^m * e^(x-2m) if (x > SAFE_EXP * 3) { // e^x > e^m * e^m * e^m // y * (e^m / 2) * e^m * e^m will overflow when starting with Double.MIN_VALUE. // Note: Do not multiply by +inf to safeguard against sin(y)=0.0 which // will create 0 * inf = nan. re *= Double.MAX_VALUE * Double.MAX_VALUE * Double.MAX_VALUE; im *= Double.MAX_VALUE * Double.MAX_VALUE * Double.MAX_VALUE; } else { // Initial part of (e^x / 2) using (e^m / 2) re *= EXP_M / 2; im *= EXP_M / 2; double xm; if (x > SAFE_EXP * 2) { // e^x = e^m * e^m * e^(x-2m) re *= EXP_M; im *= EXP_M; xm = x - SAFE_EXP * 2; } else { // e^x = e^m * e^(x-m) xm = x - SAFE_EXP; } final double exp = Math.exp(xm); re *= exp; im *= exp; } return constructor.create(re, im); } /** * Returns the * * hyperbolic tangent of this complex number. * *

\[ \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} \] * *

The hyperbolic tangent of \( z \) is an entire function in the complex plane * and is periodic with respect to the imaginary component with period \( \pi i \) * and has poles of the first order along the imaginary line, at coordinates * \( (0, \pi(\frac{1}{2} + n)) \). * Note that the {@code double} floating-point representation is unable to exactly represent * \( \pi/2 \) and there is no value for which a pole error occurs. Special cases: * *

    *
  • {@code z.conj().tanh() == z.tanh().conj()}. *
  • This is an odd function: \( \tanh(z) = -\tanh(-z) \). *
  • If {@code z} is +0 + i0, returns +0 + i0. *
  • If {@code z} is 0 + i∞, returns 0 + iNaN. *
  • If {@code z} is x + i∞ for finite non-zero x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is 0 + iNaN, returns 0 + iNAN. *
  • If {@code z} is x + iNaN for finite non-zero x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is +∞ + iy for positive-signed finite y, returns 1 + i0 sin(2y). *
  • If {@code z} is +∞ + i∞, returns 1 ± i0 (where the sign of the imaginary part of the result is unspecified). *
  • If {@code z} is +∞ + iNaN, returns 1 ± i0 (where the sign of the imaginary part of the result is unspecified). *
  • If {@code z} is NaN + i0, returns NaN + i0. *
  • If {@code z} is NaN + iy for all nonzero numbers y, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is NaN + iNaN, returns NaN + iNaN. *
* *

Special cases include the technical corrigendum * * DR 471: Complex math functions cacosh and ctanh. * *

This is defined using real \( x \) and imaginary \( y \) parts: * *

\[ \tan(x + iy) = \frac{\sinh(2x)}{\cosh(2x)+\cos(2y)} + i \frac{\sin(2y)}{\cosh(2x)+\cos(2y)} \] * *

The implementation uses double-angle identities to avoid overflow of {@code 2x} * and {@code 2y}. * * @return The hyperbolic tangent of this complex number. * @see Tanh */ public Complex tanh() { return tanh(real, imaginary, Complex::ofCartesian); } /** * Returns the hyperbolic tangent of this complex number. * *

This function exists to allow implementation of the identity * {@code tan(z) = -i tanh(iz)}.

* * @param real Real part. * @param imaginary Imaginary part. * @param constructor Constructor. * @return The hyperbolic tangent of the complex number. */ private static Complex tanh(double real, double imaginary, ComplexConstructor constructor) { // Cache the absolute real value final double x = Math.abs(real); // Handle inf or nan. if (!isPosFinite(x) || !Double.isFinite(imaginary)) { if (isPosInfinite(x)) { if (Double.isFinite(imaginary)) { // The sign is copied from sin(2y) // The identity sin(2a) = 2 sin(a) cos(a) is used for consistency // with the computation below. Only the magnitude is important // so drop the 2. When |y| is small sign(sin(2y)) = sign(y). final double sign = Math.abs(imaginary) < PI_OVER_2 ? imaginary : Math.sin(imaginary) * Math.cos(imaginary); return constructor.create(Math.copySign(1, real), Math.copySign(0, sign)); } // imaginary is infinite or NaN return constructor.create(Math.copySign(1, real), Math.copySign(0, imaginary)); } // Remaining cases: // (0 + i inf), returns (0 + i NaN) // (0 + i NaN), returns (0 + i NaN) // (x + i inf), returns (NaN + i NaN) for non-zero x (including infinite) // (x + i NaN), returns (NaN + i NaN) for non-zero x (including infinite) // (NaN + i 0), returns (NaN + i 0) // (NaN + i y), returns (NaN + i NaN) for non-zero y (including infinite) // (NaN + i NaN), returns (NaN + i NaN) return constructor.create(real == 0 ? real : Double.NaN, imaginary == 0 ? imaginary : Double.NaN); } // Finite components // tanh(x+iy) = (sinh(2x) + i sin(2y)) / (cosh(2x) + cos(2y)) if (real == 0) { // Imaginary-only tanh(iy) = i tan(y) // Identity: sin 2y / (1 + cos 2y) = tan(y) return constructor.create(real, Math.tan(imaginary)); } if (imaginary == 0) { // Identity: sinh 2x / (1 + cosh 2x) = tanh(x) return constructor.create(Math.tanh(real), imaginary); } // The double angles can be avoided using the identities: // sinh(2x) = 2 sinh(x) cosh(x) // sin(2y) = 2 sin(y) cos(y) // cosh(2x) = 2 sinh^2(x) + 1 // cos(2y) = 2 cos^2(y) - 1 // tanh(x+iy) = (sinh(x)cosh(x) + i sin(y)cos(y)) / (sinh^2(x) + cos^2(y)) // To avoid a junction when swapping between the double angles and the identities // the identities are used in all cases. if (x > SAFE_EXP / 2) { // Potential overflow in sinh/cosh(2x). // Approximate sinh/cosh using exp^x. // Ignore cos^2(y) in the divisor as it is insignificant. // real = sinh(x)cosh(x) / sinh^2(x) = +/-1 final double re = Math.copySign(1, real); // imag = sin(2y) / 2 sinh^2(x) // sinh(x) -> sign(x) * e^|x| / 2 when x is large. // sinh^2(x) -> e^2|x| / 4 when x is large. // imag = sin(2y) / 2 (e^2|x| / 4) = 2 sin(2y) / e^2|x| // = 4 * sin(y) cos(y) / e^2|x| // Underflow safe divide as e^2|x| may overflow: // imag = 4 * sin(y) cos(y) / e^m / e^(2|x| - m) // (|im| is a maximum of 2) double im = Math.sin(imaginary) * Math.cos(imaginary); if (x > SAFE_EXP) { // e^2|x| > e^m * e^m // This will underflow 2.0 / e^m / e^m im = Math.copySign(0.0, im); } else { // e^2|x| = e^m * e^(2|x| - m) im = 4 * im / EXP_M / Math.exp(2 * x - SAFE_EXP); } return constructor.create(re, im); } // No overflow of sinh(2x) and cosh(2x) // Note: This does not use the definitional formula but uses the identity: // tanh(x+iy) = (sinh(x)cosh(x) + i sin(y)cos(y)) / (sinh^2(x) + cos^2(y)) final double sinhx = Math.sinh(real); final double coshx = Math.cosh(real); final double siny = Math.sin(imaginary); final double cosy = Math.cos(imaginary); final double divisor = sinhx * sinhx + cosy * cosy; return constructor.create(sinhx * coshx / divisor, siny * cosy / divisor); } /** * Returns the * * inverse hyperbolic sine of this complex number. * *

\[ \sinh^{-1}(z) = \ln \left(z + \sqrt{1 + z^2} \right) \] * *

The inverse hyperbolic sine of \( z \) is unbounded along the real axis and * in the range \( [-\pi, \pi] \) along the imaginary axis. Special cases: * *

    *
  • {@code z.conj().asinh() == z.asinh().conj()}. *
  • This is an odd function: \( \sinh^{-1}(z) = -\sinh^{-1}(-z) \). *
  • If {@code z} is +0 + i0, returns 0 + i0. *
  • If {@code z} is x + i∞ for positive-signed finite x, returns +∞ + iπ/2. *
  • If {@code z} is x + iNaN for finite x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is +∞ + iy for positive-signed finite y, returns +∞ + i0. *
  • If {@code z} is +∞ + i∞, returns +∞ + iπ/4. *
  • If {@code z} is +∞ + iNaN, returns +∞ + iNaN. *
  • If {@code z} is NaN + i0, returns NaN + i0. *
  • If {@code z} is NaN + iy for finite nonzero y, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is NaN + i∞, returns ±∞ + iNaN (where the sign of the real part of the result is unspecified). *
  • If {@code z} is NaN + iNaN, returns NaN + iNaN. *
* *

The inverse hyperbolic sine is a multivalued function and requires a branch cut in * the complex plane; the cut is conventionally placed at the line segments * \( (-i \infty,-i) \) and \( (i,i \infty) \) of the imaginary axis. * *

This function is computed using the trigonomic identity: * *

\[ \sinh^{-1}(z) = -i \sin^{-1}(iz) \] * * @return The inverse hyperbolic sine of this complex number. * @see ArcSinh */ public Complex asinh() { // Define in terms of asin // asinh(z) = -i asin(iz) // Note: This is the opposite to the identity defined in the C99 standard: // asin(z) = -i asinh(iz) // Multiply this number by I, compute asin, then multiply by back return asin(-imaginary, real, Complex::multiplyNegativeI); } /** * Returns the * * inverse hyperbolic cosine of this complex number. * *

\[ \cosh^{-1}(z) = \ln \left(z + \sqrt{z + 1} \sqrt{z - 1} \right) \] * *

The inverse hyperbolic cosine of \( z \) is in the range \( [0, \infty) \) along the * real axis and in the range \( [-\pi, \pi] \) along the imaginary axis. Special cases: * *

    *
  • {@code z.conj().acosh() == z.acosh().conj()}. *
  • If {@code z} is ±0 + i0, returns +0 + iπ/2. *
  • If {@code z} is x + i∞ for finite x, returns +∞ + iπ/2. *
  • If {@code z} is 0 + iNaN, returns NaN + iπ/2 [1]. *
  • If {@code z} is x + iNaN for finite non-zero x, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is −∞ + iy for positive-signed finite y, returns +∞ + iπ. *
  • If {@code z} is +∞ + iy for positive-signed finite y, returns +∞ + i0. *
  • If {@code z} is −∞ + i∞, returns +∞ + i3π/4. *
  • If {@code z} is +∞ + i∞, returns +∞ + iπ/4. *
  • If {@code z} is ±∞ + iNaN, returns +∞ + iNaN. *
  • If {@code z} is NaN + iy for finite y, returns NaN + iNaN ("invalid" floating-point operation). *
  • If {@code z} is NaN + i∞, returns +∞ + iNaN. *
  • If {@code z} is NaN + iNaN, returns NaN + iNaN. *
* *

Special cases include the technical corrigendum * * DR 471: Complex math functions cacosh and ctanh. * *

The inverse hyperbolic cosine is a multivalued function and requires a branch cut in * the complex plane; the cut is conventionally placed at the line segment * \( (-\infty,-1) \) of the real axis. * *

This function is computed using the trigonomic identity: * *

\[ \cosh^{-1}(z) = \pm i \cos^{-1}(z) \] * *

The sign of the multiplier is chosen to give {@code z.acosh().real() >= 0} * and compatibility with the C99 standard. * * @return The inverse hyperbolic cosine of this complex number. * @see ArcCosh */ public Complex acosh() { // Define in terms of acos // acosh(z) = +-i acos(z) // Note the special case: // acos(+-0 + iNaN) = π/2 + iNaN // acosh(0 + iNaN) = NaN + iπ/2 // will not appropriately multiply by I to maintain positive imaginary if // acos() imaginary computes as NaN. So do this explicitly. if (Double.isNaN(imaginary) && real == 0) { return new Complex(Double.NaN, PI_OVER_2); } return acos(real, imaginary, (re, im) -> // Set the sign appropriately for real >= 0 (negative(im)) ? // Multiply by I new Complex(-im, re) : // Multiply by -I new Complex(im, -re) ); } /** * Returns the * * inverse hyperbolic tangent of this complex number. * *

\[ \tanh^{-1}(z) = \frac{1}{2} \ln \left( \frac{1 + z}{1 - z} \right) \] * *

The inverse hyperbolic tangent of \( z \) is unbounded along the real axis and * in the range \( [-\pi/2, \pi/2] \) along the imaginary axis. Special cases: * *

    *
  • {@code z.conj().atanh() == z.atanh().conj()}. *
  • This is an odd function: \( \tanh^{-1}(z) = -\tanh^{-1}(-z) \). *
  • If {@code z} is +0 + i0, returns +0 + i0. *
  • If {@code z} is +0 + iNaN, returns +0 + iNaN. *
  • If {@code z} is +1 + i0, returns +∞ + i0 ("divide-by-zero" floating-point operation). *
  • If {@code z} is x + i∞ for finite positive-signed x, returns +0 + iπ/2. *
  • If {@code z} is x+iNaN for nonzero finite x, returns NaN+iNaN ("invalid" floating-point operation). *
  • If {@code z} is +∞ + iy for finite positive-signed y, returns +0 + iπ/2. *
  • If {@code z} is +∞ + i∞, returns +0 + iπ/2. *
  • If {@code z} is +∞ + iNaN, returns +0 + iNaN. *
  • If {@code z} is NaN+iy for finite y, returns NaN+iNaN ("invalid" floating-point operation). *
  • If {@code z} is NaN + i∞, returns ±0 + iπ/2 (where the sign of the real part of the result is unspecified). *
  • If {@code z} is NaN + iNaN, returns NaN + iNaN. *
* *

The inverse hyperbolic tangent is a multivalued function and requires a branch cut in * the complex plane; the cut is conventionally placed at the line segments * \( (\infty,-1] \) and \( [1,\infty) \) of the real axis. * *

This is implemented using real \( x \) and imaginary \( y \) parts: * *

\[ \tanh^{-1}(z) = \frac{1}{4} \ln \left(1 + \frac{4x}{(1-x)^2+y^2} \right) + \\ * i \frac{1}{2} \left( \tan^{-1} \left(\frac{2y}{1-x^2-y^2} \right) + \frac{\pi}{2} \left(\text{sgn}(x^2+y^2-1)+1 \right) \text{sgn}(y) \right) \] * *

The imaginary part is computed using {@link Math#atan2(double, double)} to ensure the * correct quadrant is returned from \( \tan^{-1} \left(\frac{2y}{1-x^2-y^2} \right) \). * *

The code has been adapted from the Boost * {@code c++} implementation {@code }. * * @return The inverse hyperbolic tangent of this complex number. * @see ArcTanh */ public Complex atanh() { return atanh(real, imaginary, Complex::ofCartesian); } /** * Returns the inverse hyperbolic tangent of this complex number. * *

This function exists to allow implementation of the identity * {@code atan(z) = -i atanh(iz)}. * * The original notice is shown below and the licence is shown in full in LICENSE.txt: *

     * (C) Copyright John Maddock 2005.
     * Distributed under the Boost Software License, Version 1.0. (See accompanying
     * file LICENSE.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
     * 
* * @param real Real part. * @param imaginary Imaginary part. * @param constructor Constructor. * @return The inverse hyperbolic tangent of the complex number. */ private static Complex atanh(final double real, final double imaginary, final ComplexConstructor constructor) { // Compute with positive values and determine sign at the end double x = Math.abs(real); double y = Math.abs(imaginary); // The result (without sign correction) double re; double im; // Handle C99 special cases if (Double.isNaN(x)) { if (isPosInfinite(y)) { // The sign of the real part of the result is unspecified return constructor.create(0, Math.copySign(PI_OVER_2, imaginary)); } // No-use of the input constructor. // Optionally raises the ‘‘invalid’’ floating-point exception, for finite y. return NAN; } else if (Double.isNaN(y)) { if (isPosInfinite(x)) { return constructor.create(Math.copySign(0, real), Double.NaN); } if (x == 0) { return constructor.create(real, Double.NaN); } // No-use of the input constructor return NAN; } else { // x && y are finite or infinite. // Check the safe region. // The lower and upper bounds have been copied from boost::math::atanh. // They are different from the safe region for asin and acos. // x >= SAFE_UPPER: (1-x) == -x // x <= SAFE_LOWER: 1 - x^2 = 1 if (inRegion(x, y, SAFE_LOWER, SAFE_UPPER)) { // Normal computation within a safe region. // minus x plus 1: (-x+1) final double mxp1 = 1 - x; final double yy = y * y; // The definition of real component is: // real = log( ((x+1)^2+y^2) / ((1-x)^2+y^2) ) / 4 // This simplifies by adding 1 and subtracting 1 as a fraction: // = log(1 + ((x+1)^2+y^2) / ((1-x)^2+y^2) - ((1-x)^2+y^2)/((1-x)^2+y^2) ) / 4 // // real(atanh(z)) == log(1 + 4*x / ((1-x)^2+y^2)) / 4 // imag(atanh(z)) == tan^-1 (2y, (1-x)(1+x) - y^2) / 2 // imag(atanh(z)) == tan^-1 (2y, (1 - x^2 - y^2) / 2 // The division is done at the end of the function. re = Math.log1p(4 * x / (mxp1 * mxp1 + yy)); // Modified from boost which does not switch the magnitude of x and y. // The denominator for atan2 is 1 - x^2 - y^2. // This can be made more precise if |x| > |y|. final double numerator = 2 * y; double denominator; if (x < y) { final double tmp = x; x = y; y = tmp; } // 1 - x is precise if |x| >= 1 if (x >= 1) { denominator = (1 - x) * (1 + x) - y * y; } else { // |x| < 1: Use high precision if possible: // 1 - x^2 - y^2 = -(x^2 + y^2 - 1) denominator = -x2y2m1(x, y); } im = Math.atan2(numerator, denominator); } else { // This section handles exception cases that would normally cause // underflow or overflow in the main formulas. // C99. G.7: Special case for imaginary only numbers if (x == 0) { if (imaginary == 0) { return constructor.create(real, imaginary); } // atanh(iy) = i atan(y) return constructor.create(real, Math.atan(imaginary)); } // Real part: // real = Math.log1p(4x / ((1-x)^2 + y^2)) // real = Math.log1p(4x / (1 - 2x + x^2 + y^2)) // real = Math.log1p(4x / (1 + x(x-2) + y^2)) // without either overflow or underflow in the squared terms. if (x >= SAFE_UPPER) { // (1-x) = -x to machine precision: // log1p(4x / (x^2 + y^2)) if (isPosInfinite(x) || isPosInfinite(y)) { re = 0; } else if (y >= SAFE_UPPER) { // Big x and y: divide by x*y re = Math.log1p((4 / y) / (x / y + y / x)); } else if (y > 1) { // Big x: divide through by x: re = Math.log1p(4 / (x + y * y / x)); } else { // Big x small y, as above but neglect y^2/x: re = Math.log1p(4 / x); } } else if (y >= SAFE_UPPER) { if (x > 1) { // Big y, medium x, divide through by y: final double mxp1 = 1 - x; re = Math.log1p((4 * x / y) / (mxp1 * mxp1 / y + y)); } else { // Big y, small x, as above but neglect (1-x)^2/y: // Note: log1p(v) == v - v^2/2 + v^3/3 ... Taylor series when v is small. // Here v is so small only the first term matters. re = 4 * x / y / y; } } else if (x == 1) { // x = 1, small y: // Special case when x == 1 as (1-x) is invalid. // Simplify the following formula: // real = log( sqrt((x+1)^2+y^2) ) / 2 - log( sqrt((1-x)^2+y^2) ) / 2 // = log( sqrt(4+y^2) ) / 2 - log(y) / 2 // if: 4+y^2 -> 4 // = log( 2 ) / 2 - log(y) / 2 // = (log(2) - log(y)) / 2 // Multiply by 2 as it will be divided by 4 at the end. // C99: if y=0 raises the ‘‘divide-by-zero’’ floating-point exception. re = 2 * (LN_2 - Math.log(y)); } else { // Modified from boost which checks y > SAFE_LOWER. // if y*y -> 0 it will be ignored so always include it. final double mxp1 = 1 - x; re = Math.log1p((4 * x) / (mxp1 * mxp1 + y * y)); } // Imaginary part: // imag = atan2(2y, (1-x)(1+x) - y^2) // if x or y are large, then the formula: // atan2(2y, (1-x)(1+x) - y^2) // evaluates to +(PI - theta) where theta is negligible compared to PI. if ((x >= SAFE_UPPER) || (y >= SAFE_UPPER)) { im = Math.PI; } else if (x <= SAFE_LOWER) { // (1-x)^2 -> 1 if (y <= SAFE_LOWER) { // 1 - y^2 -> 1 im = Math.atan2(2 * y, 1); } else { im = Math.atan2(2 * y, 1 - y * y); } } else { // Medium x, small y. // Modified from boost which checks (y == 0) && (x == 1) and sets re = 0. // This is same as the result from calling atan2(0, 0) so exclude this case. // 1 - y^2 = 1 so ignore subtracting y^2 im = Math.atan2(2 * y, (1 - x) * (1 + x)); } } } re /= 4; im /= 2; return constructor.create(changeSign(re, real), changeSign(im, imaginary)); } /** * Compute {@code x^2 + y^2 - 1} in high precision. * Assumes that the values x and y can be multiplied without overflow; that * {@code x >= y}; and both values are positive. * * @param x the x value * @param y the y value * @return {@code x^2 + y^2 - 1}. */ private static double x2y2m1(double x, double y) { // Hull et al used (x-1)*(x+1)+y*y. // From the paper on page 236: // If x == 1 there is no cancellation. // If x > 1, there is also no cancellation, but the argument is now accurate // only to within a factor of 1 + 3 EPSILSON (note that x – 1 is exact), // so that error = 3 EPSILON. // If x < 1, there can be serious cancellation: // If 4 y^2 < |x^2 – 1| the cancellation is not serious ... the argument is accurate // only to within a factor of 1 + 4 EPSILSON so that error = 4 EPSILON. // Otherwise there can be serious cancellation and the relative error in the real part // could be enormous. final double xx = x * x; final double yy = y * y; // Modify to use high precision before the threshold set by Hull et al. // This is to preserve the monotonic output of the computation at the switch. // Set the threshold when x^2 + y^2 is above 0.5 thus subtracting 1 results in a number // that can be expressed with a higher precision than any number in the range 0.5-1.0 // due to the variable exponent used below 0.5. if (x < 1 && xx + yy > 0.5) { // Large relative error. // This does not use o.a.c.numbers.LinearCombination.value(x, x, y, y, 1, -1). // It is optimised knowing that: // - the products are squares // - the final term is -1 (which does not require split multiplication and addition) // - The answer will not be NaN as the terms are not NaN components // - The order is known to be 1 > |x| >= |y| // The squares are computed using a split multiply algorithm and // the summation using an extended precision summation algorithm. // Split x and y as one 26 bits number and one 27 bits number final double xHigh = splitHigh(x); final double xLow = x - xHigh; final double yHigh = splitHigh(y); final double yLow = y - yHigh; // Accurate split multiplication x * x and y * y final double x2Low = squareLow(xLow, xHigh, xx); final double y2Low = squareLow(yLow, yHigh, yy); return sumx2y2m1(xx, x2Low, yy, y2Low); } return (x - 1) * (x + 1) + yy; } /** * Implement Dekker's method to split a value into two parts. Multiplying by (2^s + 1) create * a big value from which to derive the two split parts. *
     * c = (2^s + 1) * a
     * a_big = c - a
     * a_hi = c - a_big
     * a_lo = a - a_hi
     * a = a_hi + a_lo
     * 
* *

The multiplicand must be odd allowing a p-bit value to be split into * (p-s)-bit value {@code a_hi} and a non-overlapping (s-1)-bit value {@code a_lo}. * Combined they have (p􏰔-1) bits of significand but the sign bit of {@code a_lo} * contains a bit of information. * * @param a Value. * @return the high part of the value. * @see * Dekker (1971) A floating-point technique for extending the available precision */ private static double splitHigh(double a) { final double c = MULTIPLIER * a; return c - (c - a); } /** * Compute the round-off from the square of a split number with {@code low} and {@code high} * components. Uses Dekker's algorithm for split multiplication modified for a square product. * *

Note: This is candidate to be replaced with {@code Math.fma(x, x, -x * x)} to compute * the round-off from the square product {@code x * x}. This would remove the requirement * to compute the split number and make this method redundant. {@code Math.fma} requires * JDK 9 and FMA hardware support. * * @param low Low part of number. * @param high High part of number. * @param square Square of the number. * @return low * low - (((product - high * high) - low * high) - high * low) * @see * Shewchuk (1997) Theorum 18 */ private static double squareLow(double low, double high, double square) { final double lh = low * high; return low * low - (((square - high * high) - lh) - lh); } /** * Compute the round-off from the sum of two numbers {@code a} and {@code b} using * Dekker's two-sum algorithm. The values are required to be ordered by magnitude: * {@code |a| >= |b|}. * * @param a First part of sum. * @param b Second part of sum. * @param x Sum. * @return b - (x - a) * @see * Shewchuk (1997) Theorum 6 */ private static double fastSumLow(double a, double b, double x) { // x = a + b // bVirtual = x - a // y = b - bVirtual return b - (x - a); } /** * Compute the round-off from the sum of two numbers {@code a} and {@code b} using * Knuth's two-sum algorithm. The values are not required to be ordered by magnitude. * * @param a First part of sum. * @param b Second part of sum. * @param x Sum. * @return (a - (x - (x - a))) + (b - (x - a)) * @see * Shewchuk (1997) Theorum 7 */ private static double sumLow(double a, double b, double x) { // x = a + b // bVirtual = x - a // aVirtual = x - bVirtual // bRoundoff = b - bVirtual // aRoundoff = a - aVirtual // y = aRoundoff + bRoundoff final double bVirtual = x - a; return (a - (x - bVirtual)) + (b - bVirtual); } /** * Sum x^2 + y^2 - 1. It is assumed that {@code y <= x < 1}. * *

Implement Shewchuk's expansion-sum algorithm: [x2Low, x2High] + [-1] + [y2Low, y2High]. * * @param x2High High part of x^2. * @param x2Low Low part of x^2. * @param y2High High part of y^2. * @param y2Low Low part of y^2. * @return x^2 + y^2 - 1 * @see * Shewchuk (1997) Theorum 12 */ private static double sumx2y2m1(double x2High, double x2Low, double y2High, double y2Low) { // Let e and f be non-overlapping expansions of components of length m and n. // The following algorithm will produce a non-overlapping expansion h where the // sum h_i = e + f and components of h are in increasing order of magnitude. // Expansion-sum proceeds by a grow-expansion of the first part from one expansion // into the other, extending its length by 1. The process repeats for the next part // but the grow-expansion starts at the previous merge position + 1. // Thus expansion-sum requires mn two-sum operations to merge length m into length n // resulting in length m+n-1. // Variables numbered from 1 as per Figure 7 (p.12). The output expansion h is placed // into e increasing its length for each grow expansion. // We have two expansions for x^2 and y^2 and the whole number -1. // Expecting (x^2 + y^2) close to 1 we generate first the intermediate expansion // (x^2 - 1) moving the result away from 1 where there are sparse floating point // representations. This is then added to a similar magnitude y^2. Leaving the -1 // until last suffers from 1 ulp rounding errors more often and the requirement // for a distillation sum to reduce rounding error frequency. // Note: Do not use the alternative fast-expansion-sum of the parts sorted by magnitude. // The parts can be ordered with a single comparison into: // [y2Low, (y2High|x2Low), x2High, -1] // The fast-two-sum saves 1 fast-two-sum and 3 two-sum operations (21 additions) and // adds a penalty of a single branch condition. // However the order in not "strongly non-overlapping" and the fast-expansion-sum // output will not be strongly non-overlapping. The sum of the output has 1 ulp error // on random cis numbers approximately 1 in 160 events. This can be removed by a // distillation two-sum pass over the final expansion as a cost of 1 fast-two-sum and // 3 two-sum operations! So we use the expansion sum with the same operations and // no branches. // q=running sum double q = x2Low - 1; double e1 = fastSumLow(-1, x2Low, q); double e3 = q + x2High; double e2 = sumLow(q, x2High, e3); final double f1 = y2Low; final double f2 = y2High; // Grow expansion of f1 into e q = f1 + e1; e1 = sumLow(f1, e1, q); double p = q + e2; e2 = sumLow(q, e2, p); double e4 = p + e3; e3 = sumLow(p, e3, e4); // Grow expansion of f2 into e (only required to start at e2) q = f2 + e2; e2 = sumLow(f2, e2, q); p = q + e3; e3 = sumLow(q, e3, p); final double e5 = p + e4; e4 = sumLow(p, e4, e5); // Final summation: // The sum of the parts is within 1 ulp of the true expansion value e: // |e - sum| < ulp(sum). // To achieve the exact result requires iteration of a distillation two-sum through // the expansion until convergence, i.e. no smaller term changes higher terms. // This requires (n-1) iterations for length n. Here we neglect this as // although the method is not ensured to be exact is it robust on random // cis numbers. return e1 + e2 + e3 + e4 + e5; } /** * Returns the n-th roots of this complex number. * The nth roots are defined by the formula: * *

\[ z_k = |z|^{\frac{1}{n}} \left( \cos \left(\phi + \frac{2\pi k}{n} \right) + i \sin \left(\phi + \frac{2\pi k}{n} \right) \right) \] * *

for \( k=0, 1, \ldots, n-1 \), where \( |z| \) and \( \phi \) * are respectively the {@link #abs() modulus} and * {@link #arg() argument} of this complex number. * *

If one or both parts of this complex number is NaN, a list with all * all elements set to {@code NaN + i NaN} is returned.

* * @param n Degree of root. * @return A list of all {@code n}-th roots of this complex number. * @throws IllegalArgumentException if {@code n} is zero. * @see Root */ public List nthRoot(int n) { if (n == 0) { throw new IllegalArgumentException("cannot compute zeroth root"); } final List result = new ArrayList<>(); // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = Math.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = arg() / n; final double slice = 2 * Math.PI / n; double innerPart = nthPhi; for (int k = 0; k < Math.abs(n); k++) { // inner part final double realPart = nthRootOfAbs * Math.cos(innerPart); final double imaginaryPart = nthRootOfAbs * Math.sin(innerPart); result.add(ofCartesian(realPart, imaginaryPart)); innerPart += slice; } return result; } /** * Test for equality with another object. If the other object is a {@code Complex} then a * comparison is made of the real and imaginary parts; otherwise {@code false} is returned. * *

If both the real and imaginary parts of two complex numbers * are exactly the same the two {@code Complex} objects are considered to be equal. * For this purpose, two {@code double} values are considered to be * the same if and only if the method {@link Double #doubleToLongBits(double)} * returns the identical {@code long} value when applied to each. * *

Note that in most cases, for two instances of class * {@code Complex}, {@code c1} and {@code c2}, the * value of {@code c1.equals(c2)} is {@code true} if and only if * *

     *  {@code c1.getReal() == c2.getReal() && c1.getImaginary() == c2.getImaginary()}
* *

also has the value {@code true}. However, there are exceptions: * *

    *
  • * Instances that contain {@code NaN} values in the same part * are considered to be equal for that part, even though {@code Double.NaN == Double.NaN} * has the value {@code false}. *
  • *
  • * Instances that share a {@code NaN} value in one part * but have different values in the other part are not considered equal. *
  • *
  • * Instances that contain different representations of zero in the same part * are not considered to be equal for that part, even though {@code -0.0 == 0.0} * has the value {@code true}. *
  • *
* *

The behavior is the same as if the components of the two complex numbers were passed * to {@link java.util.Arrays#equals(double[], double[]) Arrays.equals(double[], double[])}: * *

     *  Arrays.equals(new double[]{c1.getReal(), c1.getImaginary()},
     *                new double[]{c2.getReal(), c2.getImaginary()}); 
* * @param other Object to test for equality with this instance. * @return {@code true} if the objects are equal, {@code false} if object * is {@code null}, not an instance of {@code Complex}, or not equal to * this instance. * @see java.lang.Double#doubleToLongBits(double) * @see java.util.Arrays#equals(double[], double[]) */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof Complex) { final Complex c = (Complex) other; return equals(real, c.real) && equals(imaginary, c.imaginary); } return false; } /** * Gets a hash code for the complex number. * *

The behavior is the same as if the components of the complex number were passed * to {@link java.util.Arrays#hashCode(double[]) Arrays.hashCode(double[])}: * *

     *  {@code Arrays.hashCode(new double[] {getReal(), getImaginary()})}
* * @return A hash code value for this object. * @see java.util.Arrays#hashCode(double[]) Arrays.hashCode(double[]) */ @Override public int hashCode() { return 31 * (31 + Double.hashCode(real)) + Double.hashCode(imaginary); } /** * Returns a string representation of the complex number. * *

The string will represent the numeric values of the real and imaginary parts. * The values are split by a separator and surrounded by parentheses. * The string can be {@link #parse(String) parsed} to obtain an instance with the same value. * *

The format for complex number \( x + i y \) is {@code "(x,y)"}, with \( x \) and * \( y \) converted as if using {@link Double#toString(double)}. * * @return A string representation of the complex number. * @see #parse(String) * @see Double#toString(double) */ @Override public String toString() { return new StringBuilder(TO_STRING_SIZE) .append(FORMAT_START) .append(real).append(FORMAT_SEP) .append(imaginary) .append(FORMAT_END) .toString(); } /** * Returns {@code true} if the values are equal according to semantics of * {@link Double#equals(Object)}. * * @param x Value * @param y Value * @return {@code Double.valueof(x).equals(Double.valueOf(y))}. */ private static boolean equals(double x, double y) { return Double.doubleToLongBits(x) == Double.doubleToLongBits(y); } /** * Check that a value is negative. It must meet all the following conditions: *

    *
  • it is not {@code NaN},
  • *
  • it is negative signed,
  • *
* *

Note: This is true for negative zero.

* * @param d Value. * @return {@code true} if {@code d} is negative. */ private static boolean negative(double d) { return d < 0 || Double.doubleToLongBits(d) == NEGATIVE_ZERO_LONG_BITS; } /** * Check that a value is positive infinity. Used to replace {@link Double#isInfinite()} * when the input value is known to be positive (i.e. in the case where it has been * set using {@link Math#abs(double)}). * * @param d Value. * @return {@code true} if {@code d} is +inf. */ private static boolean isPosInfinite(double d) { return d == Double.POSITIVE_INFINITY; } /** * Check that an absolute value is finite. Used to replace {@link Double#isFinite()} * when the input value is known to be positive (i.e. in the case where it has been * set using {@link Math#abs(double)}). * * @param d Value. * @return {@code true} if {@code d} is +finite. */ private static boolean isPosFinite(double d) { return d <= Double.MAX_VALUE; } /** * Create a complex number given the real and imaginary parts, then multiply by {@code -i}. * This is used in functions that implement trigonomic identities. It is the functional * equivalent of: * *
     *  z = new Complex(real, imaginary).multiplyImaginary(-1);
* * @param real Real part. * @param imaginary Imaginary part. * @return {@code Complex} object. */ private static Complex multiplyNegativeI(double real, double imaginary) { return new Complex(imaginary, -real); } /** * Change the sign of the magnitude based on the signed value. * *

If the signed value is negative then the result is {@code -magnitude}; otherwise * return {@code magnitude}. * *

A signed value of {@code -0.0} is treated as negative. A signed value of {@code NaN} * is treated as positive. * *

This is not the same as {@link Math#copySign(double, double)} as this method * will change the sign based on the signed value rather than copy the sign. * * @param magnitude the magnitude * @param signedValue the signed value * @return magnitude or -magnitude. * @see #negative(double) */ private static double changeSign(double magnitude, double signedValue) { return negative(signedValue) ? -magnitude : magnitude; } /** * Returns a scale suitable for use with {@link Math#scalb(double, int)} to normalise * the number to the interval {@code [1, 2)}. * *

The scale is typically the largest unbiased exponent used in the representation of the * two numbers. In contrast to {@link Math#getExponent(double)} this handles * sub-normal numbers by computing the number of leading zeros in the mantissa * and shifting the unbiased exponent. The result is that for all finite, non-zero, * numbers {@code a, b}, the magnitude of {@code scalb(x, -getScale(a, b))} is * always in the range {@code [1, 2)}, where {@code x = max(|a|, |b|)}. * *

This method is a functional equivalent of the c function ilogb(double) adapted for * two input arguments. * *

The result is to be used to scale a complex number using {@link Math#scalb(double, int)}. * Hence the special case of both zero arguments is handled using the return value for NaN * as zero cannot be scaled. This is different from {@link Math#getExponent(double)} * or {@link #getMaxExponent(double, double)}. * *

Special cases: * *

    *
  • If either argument is NaN or infinite, then the result is * {@link Double#MAX_EXPONENT} + 1. *
  • If both arguments are zero, then the result is * {@link Double#MAX_EXPONENT} + 1. *
* * @param a the first value * @param b the second value * @return The maximum unbiased exponent of the values to be used for scaling * @see Math#getExponent(double) * @see Math#scalb(double, int) * @see ilogb */ private static int getScale(double a, double b) { // Only interested in the exponent and mantissa so remove the sign bit final long x = Double.doubleToRawLongBits(a) & UNSIGN_MASK; final long y = Double.doubleToRawLongBits(b) & UNSIGN_MASK; // Only interested in the maximum final long bits = Math.max(x, y); // Get the unbiased exponent int exp = ((int) (bits >>> 52)) - EXPONENT_OFFSET; // No case to distinguish nan/inf // Handle sub-normal numbers if (exp == Double.MIN_EXPONENT - 1) { // Special case for zero, return as nan/inf to indicate scaling is not possible if (bits == 0) { return Double.MAX_EXPONENT + 1; } // A sub-normal number has an exponent below -1022. The amount below // is defined by the number of shifts of the most significant bit in // the mantissa that is required to get a 1 at position 53 (i.e. as // if it were a normal number with assumed leading bit) final long mantissa = bits & MANTISSA_MASK; exp -= Long.numberOfLeadingZeros(mantissa << 12); } return exp; } /** * Returns the largest unbiased exponent used in the representation of the * two numbers. Special cases: * *
    *
  • If either argument is NaN or infinite, then the result is * {@link Double#MAX_EXPONENT} + 1. *
  • If both arguments are zero or subnormal, then the result is * {@link Double#MIN_EXPONENT} -1. *
* *

This is used by {@link #divide(double, double, double, double)} as * a simple detection that a number may overflow if multiplied * by a value in the interval [1, 2). * * @param a the first value * @param b the second value * @return The maximum unbiased exponent of the values. * @see Math#getExponent(double) * @see #divide(double, double, double, double) */ private static int getMaxExponent(double a, double b) { // This could return: // Math.getExponent(Math.max(Math.abs(a), Math.abs(b))) // A speed test is required to determine performance. return Math.max(Math.getExponent(a), Math.getExponent(b)); } /** * Checks if both x and y are in the region defined by the minimum and maximum. * * @param x x value. * @param y y value. * @param min the minimum (exclusive). * @param max the maximum (exclusive). * @return true if inside the region. */ private static boolean inRegion(double x, double y, double min, double max) { return (x < max) && (x > min) && (y < max) && (y > min); } /** * Returns {@code sqrt(x^2 + y^2)} without intermediate overflow or underflow. * *

Special cases: *

    *
  • If either argument is infinite, then the result is positive infinity. *
  • If either argument is NaN and neither argument is infinite, then the result is NaN. *
* *

The computed result is expected to be within 1 ulp of the exact result. * *

This method is a replacement for {@link Math#hypot(double, double)}. There * will be differences between this method and {@code Math.hypot(double, double)} due * to the use of a different algorithm to compute the high precision sum of * {@code x^2 + y^2}. This method has been tested to have a lower maximum error from * the exact result; any differences are expected to be 1 ULP indicating a rounding * change in the sum. * *

JDK9 ported the hypot function to Java for bug JDK-7130085 due to the slow performance * of the method as a native function. Benchmarks of the Complex class for functions that * use hypot confirm this is slow pre-Java 9. This implementation outperforms the new faster * {@code Math.hypot(double, double)} on JDK 11 (LTS). See the Commons numbers examples JMH * module for benchmarks. Comparisons with alternative implementations indicate * performance gains are related to edge case handling and elimination of an unpredictable * branch in the computation of {@code x^2 + y^2}. * *

This port was adapted from the c source code for the * "Freely Distributable Math Library" hypot function. * The original notice is shown below: *

     * ====================================================
     * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
     *
     * Developed at SunSoft, a Sun Microsystems, Inc. business.
     * Permission to use, copy, modify, and distribute this
     * software is freely granted, provided that this notice
     * is preserved.
     * ====================================================
     * 
* *

Note: The fdlibm c code makes use of the language ability to read and write directly * to the upper and lower 32-bits of the 64-double. The function performs * checking on the upper 32-bits for the magnitude of the two numbers by accessing * the exponent and 20 most significant bits of the mantissa. These upper bits * are manipulated during scaling and then used to perform extended precision * computation of the sum {@code x^2 + y^2} where the high part of the number has 20-bit * precision. Manipulation of direct bits has no equivalent in Java * other than use of {@link Double#doubleToLongBits(double)} and * {@link Double#longBitsToDouble(long)}. To avoid conversion to and from long and double * representations this implementation only scales the double representation. The high * and low parts of a double for the extended precision computation are extracted * using the method of Dekker (1971) to create two 26-bit numbers. This works for sub-normal * numbers and reduces the maximum error in comparison to fdlibm hypot which does not * use a split number algorithm for sub-normal numbers. * * @param x Value x * @param y Value y * @return sqrt(x^2 + y^2) * @see Math#hypot(double, double) * @see fdlibm e_hypot.c * @see JDK-7130085 : Port fdlibm hypot to Java */ private static double hypot(double x, double y) { // Differences to the fdlibm reference: // // 1. fdlibm orders the two parts using the magnitude of the upper 32-bits. // This incorrectly orders numbers which differ only in the lower 32-bits. // This invalidates hypot(x, y) = hypot(y, x) for small sub-normal numbers and a minority // of cases of normal numbers. This implementation forces the |x| >= |y| order // using the entire 63-bits of the unsigned doubles to ensure the function // is commutative. // // 2. fdlibm computed scaling by directly writing changes to the exponent bits // and maintained the high part (ha) during scaling for use in the high // precision sum x^2 + y^2. Since exponent scaling cannot be applied to sub-normals // the original version dropped the split number representation for sub-normals // and can produce maximum errors above 1 ULP for sub-normal numbers. // This version uses Dekker's method to split the number. This can be applied to // sub-normals and allows dropping the condition to check for sub-normal numbers // since all small numbers are handled with a single scaling factor. // The effect is increased precision for the majority of sub-normal cases where // the implementations compute a different result. // // 3. An alteration is done here to add an 'else if' instead of a second // 'if' statement. Since the exponent difference between a and b // is below 60, if a's exponent is above 500 then b's cannot be below // -500 even after scaling by -600 in the first conditional: // ((>500 - 60) - 600) > -500. Thus you cannot scale down and up at the same time. // // 4. There is no use of the absolute double value. The magnitude comparison is // performed using the long bit representation. The computation x^2+y^2 is // insensitive to the sign bit. Thus use of Math.abs(double) is only in edge-case // branches. // // Original comments from fdlibm are in c style: /* */ // Extra comments added for reference. // // Note that the high 32-bits are compared to constants. // The lowest 20-bits are the upper bits of the 52-bit mantissa. // The next 11-bits are the biased exponent. The sign bit has been cleared. // Scaling factors are powers of two for exact scaling. // For clarity the values have been refactored to named constants. // The mask is used to remove the sign bit. final long xbits = Double.doubleToRawLongBits(x) & UNSIGN_MASK; final long ybits = Double.doubleToRawLongBits(y) & UNSIGN_MASK; // Order by magnitude: |a| >= |b| double a; double b; /* High word of x & y */ int ha; int hb; if (ybits > xbits) { a = y; b = x; ha = (int) (ybits >>> 32); hb = (int) (xbits >>> 32); } else { a = x; b = y; ha = (int) (xbits >>> 32); hb = (int) (ybits >>> 32); } // Check if the smaller part is significant. // Do not replace this with 27 since the product x^2 is computed in // extended precision for an effective mantissa of 106-bits. Potentially it could be // replaced with 54 where y^2 will not overlap extended precision x^2. if ((ha - hb) > EXP_60) { /* x/y > 2**60 */ // or x is Inf or NaN. // No addition of a + b for sNaN. return Math.abs(a); } double rescale = 1.0; if (ha > EXP_500) { /* a > 2^500 */ if (ha >= EXP_1024) { /* Inf or NaN */ // Check b is infinite for the IEEE754 result. // No addition of a + b for sNaN. return Math.abs(b) == Double.POSITIVE_INFINITY ? Double.POSITIVE_INFINITY : Math.abs(a); } /* scale a and b by 2^-600 */ // Before scaling: a in [2^500, 2^1023]. // After scaling: a in [2^-100, 2^423]. // After scaling: b in [2^-160, 2^423]. a *= TWO_POW_NEG_600; b *= TWO_POW_NEG_600; rescale = TWO_POW_600; } else if (hb < EXP_NEG_500) { // No special handling of sub-normals. // These do not matter when we do not manipulate the exponent bits // for scaling the split representation. // Intentional comparison with zero. if (b == 0) { return Math.abs(a); } /* scale a and b by 2^600 */ // Effective min exponent of a sub-normal = -1022 - 52 = -1074. // Before scaling: b in [2^-1074, 2^-501]. // After scaling: b in [2^-474, 2^99]. // After scaling: a in [2^-474, 2^159]. a *= TWO_POW_600; b *= TWO_POW_600; rescale = TWO_POW_NEG_600; } // High precision x^2 + y^2 return Math.sqrt(x2y2(a, b)) * rescale; } /** * Return {@code x^2 + y^2} with high accuracy. * *

It is assumed that {@code 2^500 > |x| >= |y| > 2^-500}. Thus there will be no * overflow or underflow of the result. The inputs are not assumed to be unsigned. * *

The computation is performed using Dekker's method for extended precision * multiplication of x and y and then summation of the extended precision squares. * * @param x Value x. * @param y Value y * @return x^2 + y^2 * @see * Dekker (1971) A floating-point technique for extending the available precision */ private static double x2y2(double x, double y) { // Note: // This method is different from the high-accuracy summation used in fdlibm for hypot. // The summation could be any valid computation of x^2+y^2. However since this follows // the re-scaling logic in hypot(x, y) the use of high precision has relatively // less performance overhead than if used without scaling. // The Dekker algorithm is branchless for better performance // than the fdlibm method with a maximum ULP error of approximately 0.86. // // See NUMBERS-143 for analysis. // Do a Dekker summation of double length products x*x and y*y // (10 multiply and 20 additions). final double xx = x * x; final double yy = y * y; // Compute the round-off from the products. // With FMA hardware support in JDK 9+ this can be replaced with the much faster: // xxLow = Math.fma(x, x, -xx) // yyLow = Math.fma(y, y, -yy) // Dekker mul12 final double xHigh = splitHigh(x); final double xLow = x - xHigh; final double xxLow = squareLow(xLow, xHigh, xx); // Dekker mul12 final double yHigh = splitHigh(y); final double yLow = y - yHigh; final double yyLow = squareLow(yLow, yHigh, yy); // Dekker add2 final double r = xx + yy; // Note: The order is important. Assume xx > yy and drop Dekker's conditional // check for which is the greater magnitude. // s = xx - r + yy + yyLow + xxLow // z = r + s // zz = r - z + s // Here we compute z inline and ignore computing the round-off zz. // Note: The round-off could be used with Dekker's sqrt2 method. // That adds 7 multiply, 1 division and 19 additions doubling the cost // and reducing error to < 0.5 ulp for the final sqrt. return xx - r + yy + yyLow + xxLow + r; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy