All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.rng.SplittableUniformRandomProvider Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.rng;

import java.util.Objects;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;

/**
 * Applies to generators that can be split into two objects (the original and a new instance)
 * each of which implements the same interface (and can be recursively split indefinitely).
 * It is assumed that the two generators resulting from a split can be used concurrently on
 * different threads.
 *
 * 

Ideally all generators produced by recursive splitting from the original object are * statistically independent and individually uniform. In this case it would be expected that * the set of values collectively generated from a group of split generators would have the * same statistical properties as the same number of values produced from a single generator * object. * * @since 1.5 */ public interface SplittableUniformRandomProvider extends UniformRandomProvider { /** * Creates a new random generator, split off from this one, that implements * the {@link SplittableUniformRandomProvider} interface. * *

The current generator may be used a source of randomness to initialise the new instance. * In this case repeat invocations of this method will return objects with a different * initial state that are expected to be statistically independent. * * @return A new instance. */ default SplittableUniformRandomProvider split() { return split(this); } /** * Creates a new random generator, split off from this one, that implements * the {@link SplittableUniformRandomProvider} interface. * * @param source A source of randomness used to initialise the new instance. * @return A new instance. * @throws NullPointerException if {@code source} is null */ SplittableUniformRandomProvider split(UniformRandomProvider source); /** * Returns an effectively unlimited stream of new random generators, each of which * implements the {@link SplittableUniformRandomProvider} interface. * *

The current generator may be used a source of randomness to initialise the new instances. * * @return a stream of random generators. */ default Stream splits() { return splits(Long.MAX_VALUE, this); } /** * Returns an effectively unlimited stream of new random generators, each of which * implements the {@link SplittableUniformRandomProvider} interface. * * @param source A source of randomness used to initialise the new instances; this may * be split to provide a source of randomness across a parallel stream. * @return a stream of random generators. * @throws NullPointerException if {@code source} is null */ default Stream splits(SplittableUniformRandomProvider source) { return this.splits(Long.MAX_VALUE, source); } /** * Returns a stream producing the given {@code streamSize} number of new random * generators, each of which implements the {@link SplittableUniformRandomProvider} * interface. * *

The current generator may be used a source of randomness to initialise the new instances. * * @param streamSize Number of objects to generate. * @return a stream of random generators; the stream is limited to the given * {@code streamSize}. * @throws IllegalArgumentException if {@code streamSize} is negative. */ default Stream splits(long streamSize) { return splits(streamSize, this); } /** * Returns a stream producing the given {@code streamSize} number of new random * generators, each of which implements the {@link SplittableUniformRandomProvider} * interface. * * @param streamSize Number of objects to generate. * @param source A source of randomness used to initialise the new instances; this may * be split to provide a source of randomness across a parallel stream. * @return a stream of random generators; the stream is limited to the given * {@code streamSize}. * @throws IllegalArgumentException if {@code streamSize} is negative. * @throws NullPointerException if {@code source} is null */ default Stream splits(long streamSize, SplittableUniformRandomProvider source) { UniformRandomProviderSupport.validateStreamSize(streamSize); Objects.requireNonNull(source, "source"); return StreamSupport.stream( new UniformRandomProviderSupport.ProviderSplitsSpliterator(0, streamSize, source, this), false); } @Override default IntStream ints() { return ints(Long.MAX_VALUE); } @Override default IntStream ints(int origin, int bound) { return ints(Long.MAX_VALUE, origin, bound); } @Override default IntStream ints(long streamSize) { UniformRandomProviderSupport.validateStreamSize(streamSize); return StreamSupport.intStream( new UniformRandomProviderSupport.ProviderIntsSpliterator( 0, streamSize, this, UniformRandomProvider::nextInt), false); } @Override default IntStream ints(long streamSize, int origin, int bound) { UniformRandomProviderSupport.validateStreamSize(streamSize); UniformRandomProviderSupport.validateRange(origin, bound); return StreamSupport.intStream( new UniformRandomProviderSupport.ProviderIntsSpliterator( 0, streamSize, this, rng -> rng.nextInt(origin, bound)), false); } @Override default LongStream longs() { return longs(Long.MAX_VALUE); } @Override default LongStream longs(long origin, long bound) { return longs(Long.MAX_VALUE, origin, bound); } @Override default LongStream longs(long streamSize) { UniformRandomProviderSupport.validateStreamSize(streamSize); return StreamSupport.longStream( new UniformRandomProviderSupport.ProviderLongsSpliterator( 0, streamSize, this, UniformRandomProvider::nextLong), false); } @Override default LongStream longs(long streamSize, long origin, long bound) { UniformRandomProviderSupport.validateStreamSize(streamSize); UniformRandomProviderSupport.validateRange(origin, bound); return StreamSupport.longStream( new UniformRandomProviderSupport.ProviderLongsSpliterator( 0, streamSize, this, rng -> rng.nextLong(origin, bound)), false); } @Override default DoubleStream doubles() { return doubles(Long.MAX_VALUE); } @Override default DoubleStream doubles(double origin, double bound) { return doubles(Long.MAX_VALUE, origin, bound); } @Override default DoubleStream doubles(long streamSize) { UniformRandomProviderSupport.validateStreamSize(streamSize); return StreamSupport.doubleStream( new UniformRandomProviderSupport.ProviderDoublesSpliterator( 0, streamSize, this, UniformRandomProvider::nextDouble), false); } @Override default DoubleStream doubles(long streamSize, double origin, double bound) { UniformRandomProviderSupport.validateStreamSize(streamSize); UniformRandomProviderSupport.validateRange(origin, bound); return StreamSupport.doubleStream( new UniformRandomProviderSupport.ProviderDoublesSpliterator( 0, streamSize, this, rng -> rng.nextDouble(origin, bound)), false); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy