org.apache.commons.rng.sampling.distribution.AhrensDieterMarsagliaTsangGammaSampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-rng-sampling Show documentation
Show all versions of commons-rng-sampling Show documentation
The Apache Commons RNG Sampling module provides samplers
for various distributions.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Sampling from the gamma distribution.
*
* -
* For {@code 0 < alpha < 1}:
*
* Ahrens, J. H. and Dieter, U.,
* Computer methods for sampling from gamma, beta, Poisson and binomial distributions,
* Computing, 12, 223-246, 1974.
*
*
* -
* For {@code alpha >= 1}:
*
* Marsaglia and Tsang, A Simple Method for Generating
* Gamma Variables. ACM Transactions on Mathematical Software,
* Volume 26 Issue 3, September, 2000.
*
*
*
*
* Sampling uses:
*
*
* - {@link UniformRandomProvider#nextDouble()} (both algorithms)
*
- {@link UniformRandomProvider#nextLong()} (only for {@code alpha >= 1})
*
*
* @see MathWorld Gamma distribution
* @see Wikipedia Gamma distribution
* @since 1.0
*/
public class AhrensDieterMarsagliaTsangGammaSampler
extends SamplerBase
implements SharedStateContinuousSampler {
/** The appropriate gamma sampler for the parameters. */
private final SharedStateContinuousSampler delegate;
/**
* Base class for a sampler from the Gamma distribution.
*/
private abstract static class BaseGammaSampler
implements SharedStateContinuousSampler {
/** Underlying source of randomness. */
protected final UniformRandomProvider rng;
/** The alpha parameter. This is a shape parameter. */
protected final double alpha;
/** The theta parameter. This is a scale parameter. */
protected final double theta;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param alpha Alpha parameter of the distribution.
* @param theta Theta parameter of the distribution.
* @throws IllegalArgumentException if {@code alpha <= 0} or {@code theta <= 0}
*/
BaseGammaSampler(UniformRandomProvider rng,
double alpha,
double theta) {
if (alpha <= 0) {
throw new IllegalArgumentException("alpha is not strictly positive: " + alpha);
}
if (theta <= 0) {
throw new IllegalArgumentException("theta is not strictly positive: " + theta);
}
this.rng = rng;
this.alpha = alpha;
this.theta = theta;
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param source Source to copy.
*/
BaseGammaSampler(UniformRandomProvider rng,
BaseGammaSampler source) {
this.rng = rng;
this.alpha = source.alpha;
this.theta = source.theta;
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Ahrens-Dieter-Marsaglia-Tsang Gamma deviate [" + rng.toString() + "]";
}
}
/**
* Class to sample from the Gamma distribution when {@code 0 < alpha < 1}.
*
*
* Ahrens, J. H. and Dieter, U.,
* Computer methods for sampling from gamma, beta, Poisson and binomial distributions,
* Computing, 12, 223-246, 1974.
*
*/
private static class AhrensDieterGammaSampler
extends BaseGammaSampler {
/** Inverse of "alpha". */
private final double oneOverAlpha;
/** Optimization (see code). */
private final double bGSOptim;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param alpha Alpha parameter of the distribution.
* @param theta Theta parameter of the distribution.
* @throws IllegalArgumentException if {@code alpha <= 0} or {@code theta <= 0}
*/
AhrensDieterGammaSampler(UniformRandomProvider rng,
double alpha,
double theta) {
super(rng, alpha, theta);
oneOverAlpha = 1 / alpha;
bGSOptim = 1 + alpha / Math.E;
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param source Source to copy.
*/
AhrensDieterGammaSampler(UniformRandomProvider rng,
AhrensDieterGammaSampler source) {
super(rng, source);
oneOverAlpha = source.oneOverAlpha;
bGSOptim = source.bGSOptim;
}
@Override
public double sample() {
// [1]: p. 228, Algorithm GS.
while (true) {
// Step 1:
final double u = rng.nextDouble();
final double p = bGSOptim * u;
if (p <= 1) {
// Step 2:
final double x = Math.pow(p, oneOverAlpha);
final double u2 = rng.nextDouble();
if (u2 > Math.exp(-x)) {
// Reject.
continue;
}
return theta * x;
}
// Step 3:
final double x = -Math.log((bGSOptim - p) * oneOverAlpha);
final double u2 = rng.nextDouble();
if (u2 <= Math.pow(x, alpha - 1)) {
return theta * x;
}
// Reject and continue.
}
}
@Override
public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new AhrensDieterGammaSampler(rng, this);
}
}
/**
* Class to sample from the Gamma distribution when the {@code alpha >= 1}.
*
*
* Marsaglia and Tsang, A Simple Method for Generating
* Gamma Variables. ACM Transactions on Mathematical Software,
* Volume 26 Issue 3, September, 2000.
*
*/
private static class MarsagliaTsangGammaSampler
extends BaseGammaSampler {
/** 1/3. */
private static final double ONE_THIRD = 1d / 3;
/** Optimization (see code). */
private final double dOptim;
/** Optimization (see code). */
private final double cOptim;
/** Gaussian sampling. */
private final NormalizedGaussianSampler gaussian;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param alpha Alpha parameter of the distribution.
* @param theta Theta parameter of the distribution.
* @throws IllegalArgumentException if {@code alpha <= 0} or {@code theta <= 0}
*/
MarsagliaTsangGammaSampler(UniformRandomProvider rng,
double alpha,
double theta) {
super(rng, alpha, theta);
gaussian = new ZigguratNormalizedGaussianSampler(rng);
dOptim = alpha - ONE_THIRD;
cOptim = ONE_THIRD / Math.sqrt(dOptim);
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param source Source to copy.
*/
MarsagliaTsangGammaSampler(UniformRandomProvider rng,
MarsagliaTsangGammaSampler source) {
super(rng, source);
gaussian = new ZigguratNormalizedGaussianSampler(rng);
dOptim = source.dOptim;
cOptim = source.cOptim;
}
@Override
public double sample() {
while (true) {
final double x = gaussian.sample();
final double oPcTx = 1 + cOptim * x;
final double v = oPcTx * oPcTx * oPcTx;
if (v <= 0) {
continue;
}
final double x2 = x * x;
final double u = rng.nextDouble();
// Squeeze.
if (u < 1 - 0.0331 * x2 * x2) {
return theta * dOptim * v;
}
if (Math.log(u) < 0.5 * x2 + dOptim * (1 - v + Math.log(v))) {
return theta * dOptim * v;
}
}
}
@Override
public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new MarsagliaTsangGammaSampler(rng, this);
}
}
/**
* This instance delegates sampling. Use the factory method
* {@link #of(UniformRandomProvider, double, double)} to create an optimal sampler.
*
* @param rng Generator of uniformly distributed random numbers.
* @param alpha Alpha parameter of the distribution (this is a shape parameter).
* @param theta Theta parameter of the distribution (this is a scale parameter).
* @throws IllegalArgumentException if {@code alpha <= 0} or {@code theta <= 0}
*/
public AhrensDieterMarsagliaTsangGammaSampler(UniformRandomProvider rng,
double alpha,
double theta) {
super(null);
delegate = of(rng, alpha, theta);
}
/** {@inheritDoc} */
@Override
public double sample() {
return delegate.sample();
}
/** {@inheritDoc} */
@Override
public String toString() {
return delegate.toString();
}
/**
* {@inheritDoc}
*
* @since 1.3
*/
@Override
public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) {
// Direct return of the optimised sampler
return delegate.withUniformRandomProvider(rng);
}
/**
* Creates a new gamma distribution sampler.
*
* @param rng Generator of uniformly distributed random numbers.
* @param alpha Alpha parameter of the distribution (this is a shape parameter).
* @param theta Theta parameter of the distribution (this is a scale parameter).
* @return the sampler
* @throws IllegalArgumentException if {@code alpha <= 0} or {@code theta <= 0}
* @since 1.3
*/
public static SharedStateContinuousSampler of(UniformRandomProvider rng,
double alpha,
double theta) {
// Each sampler should check the input arguments.
return alpha < 1 ?
new AhrensDieterGammaSampler(rng, alpha, theta) :
new MarsagliaTsangGammaSampler(rng, alpha, theta);
}
}