org.apache.commons.rng.sampling.distribution.AhrensDieterExponentialSampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-rng-sampling Show documentation
Show all versions of commons-rng-sampling Show documentation
The Apache Commons RNG Sampling module provides samplers
for various distributions.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Sampling from an exponential distribution.
*
* Sampling uses:
*
*
* - {@link UniformRandomProvider#nextLong()}
*
- {@link UniformRandomProvider#nextDouble()}
*
*
* @since 1.0
*/
public class AhrensDieterExponentialSampler
extends SamplerBase
implements SharedStateContinuousSampler {
/**
* Table containing the constants
* \( q_i = sum_{j=1}^i (\ln 2)^j / j! = \ln 2 + (\ln 2)^2 / 2 + ... + (\ln 2)^i / i! \)
* until the largest representable fraction below 1 is exceeded.
*
* Note that
* \( 1 = 2 - 1 = \exp(\ln 2) - 1 = sum_{n=1}^\infinity (\ln 2)^n / n! \)
* thus \( q_i \rightarrow 1 as i \rightarrow +\infinity \),
* so the higher \( i \), the closer we get to 1 (the series is not alternating).
*
* By trying, n = 16 in Java is enough to reach 1.
*/
private static final double[] EXPONENTIAL_SA_QI = new double[16];
/** The mean of this distribution. */
private final double mean;
/** Underlying source of randomness. */
private final UniformRandomProvider rng;
//
// Initialize tables.
//
static {
//
// Filling EXPONENTIAL_SA_QI table.
// Note that we don't want qi = 0 in the table.
//
final double ln2 = Math.log(2);
double qi = 0;
for (int i = 0; i < EXPONENTIAL_SA_QI.length; i++) {
qi += Math.pow(ln2, i + 1.0) / InternalUtils.factorial(i + 1);
EXPONENTIAL_SA_QI[i] = qi;
}
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean of this distribution.
* @throws IllegalArgumentException if {@code mean <= 0}
*/
public AhrensDieterExponentialSampler(UniformRandomProvider rng,
double mean) {
super(null);
if (mean <= 0) {
throw new IllegalArgumentException("mean is not strictly positive: " + mean);
}
this.rng = rng;
this.mean = mean;
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param source Source to copy.
*/
private AhrensDieterExponentialSampler(UniformRandomProvider rng,
AhrensDieterExponentialSampler source) {
super(null);
this.rng = rng;
this.mean = source.mean;
}
/** {@inheritDoc} */
@Override
public double sample() {
// Step 1:
double a = 0;
// Avoid u=0 which creates an infinite loop
double u = InternalUtils.makeNonZeroDouble(rng.nextLong());
// Step 2 and 3:
while (u < 0.5) {
a += EXPONENTIAL_SA_QI[0];
u *= 2;
}
// Step 4 (now u >= 0.5):
u += u - 1;
// Step 5:
if (u <= EXPONENTIAL_SA_QI[0]) {
return mean * (a + u);
}
// Step 6:
int i = 0; // Should be 1, be we iterate before it in while using 0.
double u2 = rng.nextDouble();
double umin = u2;
// Step 7 and 8:
do {
++i;
u2 = rng.nextDouble();
if (u2 < umin) {
umin = u2;
}
// Step 8:
} while (u > EXPONENTIAL_SA_QI[i]); // Ensured to exit since EXPONENTIAL_SA_QI[MAX] = 1.
return mean * (a + umin * EXPONENTIAL_SA_QI[0]);
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Ahrens-Dieter Exponential deviate [" + rng.toString() + "]";
}
/**
* {@inheritDoc}
*
* @since 1.3
*/
@Override
public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new AhrensDieterExponentialSampler(rng, this);
}
/**
* Create a new exponential distribution sampler.
*
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean of the distribution.
* @return the sampler
* @throws IllegalArgumentException if {@code mean <= 0}
* @since 1.3
*/
public static SharedStateContinuousSampler of(UniformRandomProvider rng,
double mean) {
return new AhrensDieterExponentialSampler(rng, mean);
}
}