All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.rng.sampling.distribution.AhrensDieterExponentialSampler Maven / Gradle / Ivy

Go to download

The Apache Commons RNG Sampling module provides samplers for various distributions.

There is a newer version: 1.6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.rng.sampling.distribution;

import org.apache.commons.rng.UniformRandomProvider;

/**
 * Sampling from an exponential distribution.
 *
 * 

Sampling uses:

* *
    *
  • {@link UniformRandomProvider#nextLong()} *
  • {@link UniformRandomProvider#nextDouble()} *
* * @since 1.0 */ public class AhrensDieterExponentialSampler extends SamplerBase implements SharedStateContinuousSampler { /** * Table containing the constants * \( q_i = sum_{j=1}^i (\ln 2)^j / j! = \ln 2 + (\ln 2)^2 / 2 + ... + (\ln 2)^i / i! \) * until the largest representable fraction below 1 is exceeded. * * Note that * \( 1 = 2 - 1 = \exp(\ln 2) - 1 = sum_{n=1}^\infinity (\ln 2)^n / n! \) * thus \( q_i \rightarrow 1 as i \rightarrow +\infinity \), * so the higher \( i \), the closer we get to 1 (the series is not alternating). * * By trying, n = 16 in Java is enough to reach 1. */ private static final double[] EXPONENTIAL_SA_QI = new double[16]; /** The mean of this distribution. */ private final double mean; /** Underlying source of randomness. */ private final UniformRandomProvider rng; // // Initialize tables. // static { // // Filling EXPONENTIAL_SA_QI table. // Note that we don't want qi = 0 in the table. // final double ln2 = Math.log(2); double qi = 0; for (int i = 0; i < EXPONENTIAL_SA_QI.length; i++) { qi += Math.pow(ln2, i + 1.0) / InternalUtils.factorial(i + 1); EXPONENTIAL_SA_QI[i] = qi; } } /** * @param rng Generator of uniformly distributed random numbers. * @param mean Mean of this distribution. * @throws IllegalArgumentException if {@code mean <= 0} */ public AhrensDieterExponentialSampler(UniformRandomProvider rng, double mean) { super(null); if (mean <= 0) { throw new IllegalArgumentException("mean is not strictly positive: " + mean); } this.rng = rng; this.mean = mean; } /** * @param rng Generator of uniformly distributed random numbers. * @param source Source to copy. */ private AhrensDieterExponentialSampler(UniformRandomProvider rng, AhrensDieterExponentialSampler source) { super(null); this.rng = rng; this.mean = source.mean; } /** {@inheritDoc} */ @Override public double sample() { // Step 1: double a = 0; // Avoid u=0 which creates an infinite loop double u = InternalUtils.makeNonZeroDouble(rng.nextLong()); // Step 2 and 3: while (u < 0.5) { a += EXPONENTIAL_SA_QI[0]; u *= 2; } // Step 4 (now u >= 0.5): u += u - 1; // Step 5: if (u <= EXPONENTIAL_SA_QI[0]) { return mean * (a + u); } // Step 6: int i = 0; // Should be 1, be we iterate before it in while using 0. double u2 = rng.nextDouble(); double umin = u2; // Step 7 and 8: do { ++i; u2 = rng.nextDouble(); if (u2 < umin) { umin = u2; } // Step 8: } while (u > EXPONENTIAL_SA_QI[i]); // Ensured to exit since EXPONENTIAL_SA_QI[MAX] = 1. return mean * (a + umin * EXPONENTIAL_SA_QI[0]); } /** {@inheritDoc} */ @Override public String toString() { return "Ahrens-Dieter Exponential deviate [" + rng.toString() + "]"; } /** * {@inheritDoc} * * @since 1.3 */ @Override public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) { return new AhrensDieterExponentialSampler(rng, this); } /** * Create a new exponential distribution sampler. * * @param rng Generator of uniformly distributed random numbers. * @param mean Mean of the distribution. * @return the sampler * @throws IllegalArgumentException if {@code mean <= 0} * @since 1.3 */ public static SharedStateContinuousSampler of(UniformRandomProvider rng, double mean) { return new AhrensDieterExponentialSampler(rng, mean); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy