org.apache.commons.rng.sampling.distribution.BoxMullerGaussianSampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-rng-sampling Show documentation
Show all versions of commons-rng-sampling Show documentation
The Apache Commons RNG Sampling module provides samplers
for various distributions.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
*
* Box-Muller algorithm for sampling from a Gaussian distribution.
*
* Sampling uses {@link UniformRandomProvider#nextDouble()}.
*
* @since 1.0
*
* @deprecated Since version 1.1. Please use {@link BoxMullerNormalizedGaussianSampler}
* and {@link GaussianSampler} instead.
*/
@Deprecated
public class BoxMullerGaussianSampler
extends SamplerBase
implements ContinuousSampler {
/** Next gaussian. */
private double nextGaussian = Double.NaN;
/** Mean. */
private final double mean;
/** standardDeviation. */
private final double standardDeviation;
/** Underlying source of randomness. */
private final UniformRandomProvider rng;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean of the Gaussian distribution.
* @param standardDeviation Standard deviation of the Gaussian distribution.
* @throws IllegalArgumentException if {@code standardDeviation <= 0}
*/
public BoxMullerGaussianSampler(UniformRandomProvider rng,
double mean,
double standardDeviation) {
super(null);
if (standardDeviation <= 0) {
throw new IllegalArgumentException("standard deviation is not strictly positive: " +
standardDeviation);
}
this.rng = rng;
this.mean = mean;
this.standardDeviation = standardDeviation;
}
/** {@inheritDoc} */
@Override
public double sample() {
double random;
if (Double.isNaN(nextGaussian)) {
// Generate a pair of Gaussian numbers.
// Avoid zero for the uniform deviate y.
// The extreme tail of the sample is:
// y = 2^-53
// r = 8.57167
final double x = rng.nextDouble();
final double y = InternalUtils.makeNonZeroDouble(rng.nextLong());
final double alpha = 2 * Math.PI * x;
final double r = Math.sqrt(-2 * Math.log(y));
// Return the first element of the generated pair.
random = r * Math.cos(alpha);
// Keep second element of the pair for next invocation.
nextGaussian = r * Math.sin(alpha);
} else {
// Use the second element of the pair (generated at the
// previous invocation).
random = nextGaussian;
// Both elements of the pair have been used.
nextGaussian = Double.NaN;
}
return standardDeviation * random + mean;
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Box-Muller Gaussian deviate [" + rng.toString() + "]";
}
}