org.apache.commons.rng.sampling.distribution.ChengBetaSampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-rng-sampling Show documentation
Show all versions of commons-rng-sampling Show documentation
The Apache Commons RNG Sampling module provides samplers
for various distributions.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Sampling from a beta distribution.
*
* Uses Cheng's algorithms for beta distribution sampling:
*
*
*
* R. C. H. Cheng,
* "Generating beta variates with nonintegral shape parameters",
* Communications of the ACM, 21, 317-322, 1978.
*
*
*
* Sampling uses {@link UniformRandomProvider#nextDouble()}.
*
* @since 1.0
*/
public class ChengBetaSampler
extends SamplerBase
implements SharedStateContinuousSampler {
/** Natural logarithm of 4. */
private static final double LN_4 = Math.log(4.0);
/** The appropriate beta sampler for the parameters. */
private final SharedStateContinuousSampler delegate;
/**
* Base class to implement Cheng's algorithms for the beta distribution.
*/
private abstract static class BaseChengBetaSampler
implements SharedStateContinuousSampler {
/**
* Flag set to true if {@code a} is the beta distribution alpha shape parameter.
* Otherwise {@code a} is the beta distribution beta shape parameter.
*
* From the original Cheng paper this is equal to the result of: {@code a == a0}.
*/
protected final boolean aIsAlphaShape;
/**
* First shape parameter.
* The meaning of this is dependent on the {@code aIsAlphaShape} flag.
*/
protected final double a;
/**
* Second shape parameter.
* The meaning of this is dependent on the {@code aIsAlphaShape} flag.
*/
protected final double b;
/** Underlying source of randomness. */
protected final UniformRandomProvider rng;
/**
* The algorithm alpha factor. This is not the beta distribution alpha shape parameter.
* It is the sum of the two shape parameters ({@code a + b}.
*/
protected final double alpha;
/** The logarithm of the alpha factor. */
protected final double logAlpha;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param aIsAlphaShape true if {@code a} is the beta distribution alpha shape parameter.
* @param a Distribution first shape parameter.
* @param b Distribution second shape parameter.
*/
BaseChengBetaSampler(UniformRandomProvider rng, boolean aIsAlphaShape, double a, double b) {
this.rng = rng;
this.aIsAlphaShape = aIsAlphaShape;
this.a = a;
this.b = b;
alpha = a + b;
logAlpha = Math.log(alpha);
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param source Source to copy.
*/
private BaseChengBetaSampler(UniformRandomProvider rng,
BaseChengBetaSampler source) {
this.rng = rng;
aIsAlphaShape = source.aIsAlphaShape;
a = source.a;
b = source.b;
// Compute algorithm factors.
alpha = source.alpha;
logAlpha = source.logAlpha;
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Cheng Beta deviate [" + rng.toString() + "]";
}
/**
* Compute the sample result X.
*
*
* If a == a0 deliver X = W/(b + W); otherwise deliver X = b/(b + W).
*
*
* The finalisation step is shared between the BB and BC algorithm (as step 5 of the
* BB algorithm and step 6 of the BC algorithm).
*
* @param w Algorithm value W.
* @return the sample value
*/
protected double computeX(double w) {
// Avoid (infinity / infinity) producing NaN
final double tmp = Math.min(w, Double.MAX_VALUE);
return aIsAlphaShape ? tmp / (b + tmp) : b / (b + tmp);
}
}
/**
* Computes one sample using Cheng's BB algorithm, when beta distribution {@code alpha} and
* {@code beta} shape parameters are both larger than 1.
*/
private static class ChengBBBetaSampler extends BaseChengBetaSampler {
/** 1 + natural logarithm of 5. */
private static final double LN_5_P1 = 1 + Math.log(5.0);
/** The algorithm beta factor. This is not the beta distribution beta shape parameter. */
private final double beta;
/** The algorithm gamma factor. */
private final double gamma;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param aIsAlphaShape true if {@code a} is the beta distribution alpha shape parameter.
* @param a min(alpha, beta) shape parameter.
* @param b max(alpha, beta) shape parameter.
*/
ChengBBBetaSampler(UniformRandomProvider rng, boolean aIsAlphaShape, double a, double b) {
super(rng, aIsAlphaShape, a, b);
beta = Math.sqrt((alpha - 2) / (2 * a * b - alpha));
gamma = a + 1 / beta;
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param source Source to copy.
*/
private ChengBBBetaSampler(UniformRandomProvider rng,
ChengBBBetaSampler source) {
super(rng, source);
// Compute algorithm factors.
beta = source.beta;
gamma = source.gamma;
}
@Override
public double sample() {
double r;
double w;
double t;
do {
// Step 1:
final double u1 = rng.nextDouble();
final double u2 = rng.nextDouble();
final double v = beta * (Math.log(u1) - Math.log1p(-u1));
w = a * Math.exp(v);
final double z = u1 * u1 * u2;
r = gamma * v - LN_4;
final double s = a + r - w;
// Step 2:
if (s + LN_5_P1 >= 5 * z) {
break;
}
// Step 3:
t = Math.log(z);
if (s >= t) {
break;
}
// Step 4:
} while (r + alpha * (logAlpha - Math.log(b + w)) < t);
// Step 5:
return computeX(w);
}
@Override
public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new ChengBBBetaSampler(rng, this);
}
}
/**
* Computes one sample using Cheng's BC algorithm, when at least one of beta distribution
* {@code alpha} or {@code beta} shape parameters is smaller than 1.
*/
private static class ChengBCBetaSampler extends BaseChengBetaSampler {
/** 1/2. */
private static final double ONE_HALF = 1d / 2;
/** 1/4. */
private static final double ONE_QUARTER = 1d / 4;
/** The algorithm beta factor. This is not the beta distribution beta shape parameter. */
private final double beta;
/** The algorithm delta factor. */
private final double delta;
/** The algorithm k1 factor. */
private final double k1;
/** The algorithm k2 factor. */
private final double k2;
/**
* @param rng Generator of uniformly distributed random numbers.
* @param aIsAlphaShape true if {@code a} is the beta distribution alpha shape parameter.
* @param a max(alpha, beta) shape parameter.
* @param b min(alpha, beta) shape parameter.
*/
ChengBCBetaSampler(UniformRandomProvider rng, boolean aIsAlphaShape, double a, double b) {
super(rng, aIsAlphaShape, a, b);
// Compute algorithm factors.
beta = 1 / b;
delta = 1 + a - b;
// The following factors are divided by 4:
// k1 = delta * (1 + 3b) / (18a/b - 14)
// k2 = 1 + (2 + 1/delta) * b
k1 = delta * (1.0 / 72.0 + 3.0 / 72.0 * b) / (a * beta - 7.0 / 9.0);
k2 = 0.25 + (0.5 + 0.25 / delta) * b;
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param source Source to copy.
*/
private ChengBCBetaSampler(UniformRandomProvider rng,
ChengBCBetaSampler source) {
super(rng, source);
beta = source.beta;
delta = source.delta;
k1 = source.k1;
k2 = source.k2;
}
@Override
public double sample() {
double w;
while (true) {
// Step 1:
final double u1 = rng.nextDouble();
final double u2 = rng.nextDouble();
// Compute Y and Z
final double y = u1 * u2;
final double z = u1 * y;
if (u1 < ONE_HALF) {
// Step 2:
if (ONE_QUARTER * u2 + z - y >= k1) {
continue;
}
} else {
// Step 3:
if (z <= ONE_QUARTER) {
final double v = beta * (Math.log(u1) - Math.log1p(-u1));
w = a * Math.exp(v);
break;
}
// Step 4:
if (z >= k2) {
continue;
}
}
// Step 5:
final double v = beta * (Math.log(u1) - Math.log1p(-u1));
w = a * Math.exp(v);
if (alpha * (logAlpha - Math.log(b + w) + v) - LN_4 >= Math.log(z)) {
break;
}
}
// Step 6:
return computeX(w);
}
@Override
public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new ChengBCBetaSampler(rng, this);
}
}
/**
* Creates a sampler instance.
*
* @param rng Generator of uniformly distributed random numbers.
* @param alpha Distribution first shape parameter.
* @param beta Distribution second shape parameter.
* @throws IllegalArgumentException if {@code alpha <= 0} or {@code beta <= 0}
*/
public ChengBetaSampler(UniformRandomProvider rng,
double alpha,
double beta) {
super(null);
delegate = of(rng, alpha, beta);
}
/** {@inheritDoc} */
@Override
public double sample() {
return delegate.sample();
}
/** {@inheritDoc} */
@Override
public String toString() {
return delegate.toString();
}
/**
* {@inheritDoc}
*
* @since 1.3
*/
@Override
public SharedStateContinuousSampler withUniformRandomProvider(UniformRandomProvider rng) {
return delegate.withUniformRandomProvider(rng);
}
/**
* Creates a new beta distribution sampler.
*
* @param rng Generator of uniformly distributed random numbers.
* @param alpha Distribution first shape parameter.
* @param beta Distribution second shape parameter.
* @return the sampler
* @throws IllegalArgumentException if {@code alpha <= 0} or {@code beta <= 0}
* @since 1.3
*/
public static SharedStateContinuousSampler of(UniformRandomProvider rng,
double alpha,
double beta) {
if (alpha <= 0) {
throw new IllegalArgumentException("alpha is not strictly positive: " + alpha);
}
if (beta <= 0) {
throw new IllegalArgumentException("beta is not strictly positive: " + beta);
}
// Choose the algorithm.
final double a = Math.min(alpha, beta);
final double b = Math.max(alpha, beta);
final boolean aIsAlphaShape = a == alpha;
return a > 1 ?
// BB algorithm
new ChengBBBetaSampler(rng, aIsAlphaShape, a, b) :
// The BC algorithm is deliberately invoked with reversed parameters
// as the argument order is: max(alpha,beta), min(alpha,beta).
// Also invert the 'a is alpha' flag.
new ChengBCBetaSampler(rng, !aIsAlphaShape, b, a);
}
}