org.apache.commons.rng.sampling.distribution.InternalUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-rng-sampling Show documentation
Show all versions of commons-rng-sampling Show documentation
The Apache Commons RNG Sampling module provides samplers
for various distributions.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.SharedStateSampler;
/**
* Functions used by some of the samplers.
* This class is not part of the public API, as it would be
* better to group these utilities in a dedicated component.
*/
final class InternalUtils { // Class is package-private on purpose; do not make it public.
/** All long-representable factorials. */
private static final long[] FACTORIALS = {
1L, 1L, 2L,
6L, 24L, 120L,
720L, 5040L, 40320L,
362880L, 3628800L, 39916800L,
479001600L, 6227020800L, 87178291200L,
1307674368000L, 20922789888000L, 355687428096000L,
6402373705728000L, 121645100408832000L, 2432902008176640000L };
/** The first array index with a non-zero log factorial. */
private static final int BEGIN_LOG_FACTORIALS = 2;
/**
* The multiplier to convert the least significant 53-bits of a {@code long} to a {@code double}.
* Taken from org.apache.commons.rng.core.util.NumberFactory.
*/
private static final double DOUBLE_MULTIPLIER = 0x1.0p-53d;
/** Utility class. */
private InternalUtils() {}
/**
* @param n Argument.
* @return {@code n!}
* @throws IndexOutOfBoundsException if the result is too large to be represented
* by a {@code long} (i.e. if {@code n > 20}), or {@code n} is negative.
*/
static long factorial(int n) {
return FACTORIALS[n];
}
/**
* Validate the probabilities sum to a finite positive number.
*
* @param probabilities the probabilities
* @return the sum
* @throws IllegalArgumentException if {@code probabilities} is null or empty, a
* probability is negative, infinite or {@code NaN}, or the sum of all
* probabilities is not strictly positive.
*/
static double validateProbabilities(double[] probabilities) {
if (probabilities == null || probabilities.length == 0) {
throw new IllegalArgumentException("Probabilities must not be empty.");
}
double sumProb = 0;
for (final double prob : probabilities) {
validateProbability(prob);
sumProb += prob;
}
if (Double.isInfinite(sumProb) || sumProb <= 0) {
throw new IllegalArgumentException("Invalid sum of probabilities: " + sumProb);
}
return sumProb;
}
/**
* Validate the probability is a finite positive number.
*
* @param probability Probability.
* @throws IllegalArgumentException if {@code probability} is negative, infinite or {@code NaN}.
*/
static void validateProbability(double probability) {
if (probability < 0 ||
Double.isInfinite(probability) ||
Double.isNaN(probability)) {
throw new IllegalArgumentException("Invalid probability: " +
probability);
}
}
/**
* Create a new instance of the given sampler using
* {@link SharedStateSampler#withUniformRandomProvider(UniformRandomProvider)}.
*
* @param sampler Source sampler.
* @param rng Generator of uniformly distributed random numbers.
* @return the new sampler
* @throws UnsupportedOperationException if the underlying sampler is not a
* {@link SharedStateSampler} or does not return a {@link NormalizedGaussianSampler} when
* sharing state.
*/
static NormalizedGaussianSampler newNormalizedGaussianSampler(
NormalizedGaussianSampler sampler,
UniformRandomProvider rng) {
if (!(sampler instanceof SharedStateSampler>)) {
throw new UnsupportedOperationException("The underlying sampler cannot share state");
}
final Object newSampler = ((SharedStateSampler>) sampler).withUniformRandomProvider(rng);
if (!(newSampler instanceof NormalizedGaussianSampler)) {
throw new UnsupportedOperationException(
"The underlying sampler did not create a normalized Gaussian sampler");
}
return (NormalizedGaussianSampler) newSampler;
}
/**
* Creates a {@code double} in the interval {@code (0, 1]} from a {@code long} value.
*
* @param v Number.
* @return a {@code double} value in the interval {@code (0, 1]}.
*/
static double makeNonZeroDouble(long v) {
// This matches the method in o.a.c.rng.core.util.NumberFactory.makeDouble(long)
// but shifts the range from [0, 1) to (0, 1].
return ((v >>> 11) + 1L) * DOUBLE_MULTIPLIER;
}
/**
* Class for computing the natural logarithm of the factorial of {@code n}.
* It allows to allocate a cache of precomputed values.
* In case of cache miss, computation is performed by a call to
* {@link InternalGamma#logGamma(double)}.
*/
public static final class FactorialLog {
/**
* Precomputed values of the function:
* {@code LOG_FACTORIALS[i] = log(i!)}.
*/
private final double[] logFactorials;
/**
* Creates an instance, reusing the already computed values if available.
*
* @param numValues Number of values of the function to compute.
* @param cache Existing cache.
* @throws NegativeArraySizeException if {@code numValues < 0}.
*/
private FactorialLog(int numValues,
double[] cache) {
logFactorials = new double[numValues];
int endCopy;
if (cache != null && cache.length > BEGIN_LOG_FACTORIALS) {
// Copy available values.
endCopy = Math.min(cache.length, numValues);
System.arraycopy(cache, BEGIN_LOG_FACTORIALS, logFactorials, BEGIN_LOG_FACTORIALS,
endCopy - BEGIN_LOG_FACTORIALS);
} else {
// All values to be computed
endCopy = BEGIN_LOG_FACTORIALS;
}
// Compute remaining values.
for (int i = endCopy; i < numValues; i++) {
if (i < FACTORIALS.length) {
logFactorials[i] = Math.log(FACTORIALS[i]);
} else {
logFactorials[i] = logFactorials[i - 1] + Math.log(i);
}
}
}
/**
* Creates an instance with no precomputed values.
*
* @return an instance with no precomputed values.
*/
public static FactorialLog create() {
return new FactorialLog(0, null);
}
/**
* Creates an instance with the specified cache size.
*
* @param cacheSize Number of precomputed values of the function.
* @return a new instance where {@code cacheSize} values have been
* precomputed.
* @throws IllegalArgumentException if {@code n < 0}.
*/
public FactorialLog withCache(final int cacheSize) {
return new FactorialLog(cacheSize, logFactorials);
}
/**
* Computes {@code log(n!)}.
*
* @param n Argument.
* @return {@code log(n!)}.
* @throws IndexOutOfBoundsException if {@code numValues < 0}.
*/
public double value(final int n) {
// Use cache of precomputed values.
if (n < logFactorials.length) {
return logFactorials[n];
}
// Use cache of precomputed factorial values.
if (n < FACTORIALS.length) {
return Math.log(FACTORIALS[n]);
}
// Delegate.
return InternalGamma.logGamma(n + 1.0);
}
}
}