org.apache.commons.rng.sampling.shape.TetrahedronSampler Maven / Gradle / Ivy
Show all versions of commons-rng-sampling Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.shape;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.SharedStateObjectSampler;
/**
* Generate points uniformly distributed within a
* tetrahedron.
*
*
* -
* Uses the algorithm described in:
*
* Rocchini, C. and Cignoni, P. (2001)
* Generating Random Points in a Tetrahedron.
* Journal of Graphics Tools 5(4), pp. 9-12.
*
*
*
*
* Sampling uses:
*
*
* - {@link UniformRandomProvider#nextDouble()}
*
*
* @see
* Rocchini, C. & Cignoni, P. (2001) Journal of Graphics Tools 5, pp. 9-12
* @since 1.4
*/
public class TetrahedronSampler implements SharedStateObjectSampler {
/** The dimension for 3D sampling. */
private static final int THREE_D = 3;
/** The name of vertex a. */
private static final String VERTEX_A = "Vertex a";
/** The name of vertex b. */
private static final String VERTEX_B = "Vertex b";
/** The name of vertex c. */
private static final String VERTEX_C = "Vertex c";
/** The name of vertex d. */
private static final String VERTEX_D = "Vertex d";
/** The first vertex. */
private final double[] a;
/** The second vertex. */
private final double[] b;
/** The third vertex. */
private final double[] c;
/** The fourth vertex. */
private final double[] d;
/** The source of randomness. */
private final UniformRandomProvider rng;
/**
* @param rng Source of randomness.
* @param a The first vertex.
* @param b The second vertex.
* @param c The third vertex.
* @param d The fourth vertex.
*/
TetrahedronSampler(UniformRandomProvider rng, double[] a, double[] b, double[] c, double[] d) {
// Defensive copy
this.a = a.clone();
this.b = b.clone();
this.c = c.clone();
this.d = d.clone();
this.rng = rng;
}
/**
* @param rng Generator of uniformly distributed random numbers
* @param source Source to copy.
*/
TetrahedronSampler(UniformRandomProvider rng, TetrahedronSampler source) {
// Shared state is immutable
a = source.a;
b = source.b;
c = source.c;
d = source.d;
this.rng = rng;
}
/**
* @return a random Cartesian point within the tetrahedron.
*/
@Override
public double[] sample() {
double s = rng.nextDouble();
double t = rng.nextDouble();
final double u = rng.nextDouble();
// Care is taken to ensure the 3 deviates remain in the 2^53 dyadic rationals in [0, 1).
// The following are exact for all the 2^53 dyadic rationals:
// 1 - u; u in [0, 1]
// u - 1; u in [0, 1]
// u + 1; u in [-1, 0]
// u + v; u in [-1, 0], v in [0, 1]
// u + v; u, v in [0, 1], u + v <= 1
// Cut and fold with the plane s + t = 1
if (s + t > 1) {
// (s, t, u) = (1 - s, 1 - t, u) if s + t > 1
s = 1 - s;
t = 1 - t;
}
// Now s + t <= 1.
// Cut and fold with the planes t + u = 1 and s + t + u = 1.
final double tpu = t + u;
final double sptpu = s + tpu;
if (sptpu > 1) {
if (tpu > 1) {
// (s, t, u) = (s, 1 - u, 1 - s - t) if t + u > 1
// 1 - s - (1-u) - (1-s-t) == u - 1 + t
return createSample(u - 1 + t, s, 1 - u, 1 - s - t);
}
// (s, t, u) = (1 - t - u, t, s + t + u - 1) if t + u <= 1
// 1 - (1-t-u) - t - (s+t+u-1) == 1 - s - t
return createSample(1 - s - t, 1 - tpu, t, s - 1 + tpu);
}
return createSample(1 - sptpu, s, t, u);
}
/**
* Creates the sample given the random variates {@code s}, {@code t} and {@code u} in the
* interval {@code [0, 1]} and {@code s + t + u <= 1}. The sum {@code 1 - s - t - u} is
* provided. The sample can be obtained from the tetrahedron {@code abcd} using:
*
*
* p = (1 - s - t - u)a + sb + tc + ud
*
*
* @param p1msmtmu plus 1 minus s minus t minus u ({@code 1 - s - t - u})
* @param s the first variate s
* @param t the second variate t
* @param u the third variate u
* @return the sample
*/
private double[] createSample(double p1msmtmu, double s, double t, double u) {
// From the barycentric coordinates s,t,u create the point by moving along
// vectors ab, ac and ad.
// Here we do not compute the vectors and use the original vertices:
// p = a + s(b-a) + t(c-a) + u(d-a)
// = (1-s-t-u)a + sb + tc + ud
return new double[] {p1msmtmu * a[0] + s * b[0] + t * c[0] + u * d[0],
p1msmtmu * a[1] + s * b[1] + t * c[1] + u * d[1],
p1msmtmu * a[2] + s * b[2] + t * c[2] + u * d[2]};
}
/** {@inheritDoc} */
@Override
public TetrahedronSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new TetrahedronSampler(rng, this);
}
/**
* Create a tetrahedron sampler with vertices {@code a}, {@code b}, {@code c} and {@code d}.
* Sampled points are uniformly distributed within the tetrahedron.
*
* No test for a volume is performed. If the vertices are coplanar the sampling
* distribution is undefined.
*
* @param rng Source of randomness.
* @param a The first vertex.
* @param b The second vertex.
* @param c The third vertex.
* @param d The fourth vertex.
* @return the sampler
* @throws IllegalArgumentException If the vertices do not have length 3;
* or vertices have non-finite coordinates
*/
public static TetrahedronSampler of(UniformRandomProvider rng,
double[] a,
double[] b,
double[] c,
double[] d) {
// Must be 3D
Coordinates.requireLength(a, THREE_D, VERTEX_A);
Coordinates.requireLength(b, THREE_D, VERTEX_B);
Coordinates.requireLength(c, THREE_D, VERTEX_C);
Coordinates.requireLength(d, THREE_D, VERTEX_D);
// Detect non-finite vertices
Coordinates.requireFinite(a, VERTEX_A);
Coordinates.requireFinite(b, VERTEX_B);
Coordinates.requireFinite(c, VERTEX_C);
Coordinates.requireFinite(d, VERTEX_D);
return new TetrahedronSampler(rng, a, b, c, d);
}
}