All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.rng.sampling.shape.UnitBallSampler Maven / Gradle / Ivy

Go to download

The Apache Commons RNG Sampling module provides samplers for various distributions.

There is a newer version: 1.6
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.rng.sampling.shape;

import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.SharedStateObjectSampler;
import org.apache.commons.rng.sampling.distribution.ContinuousSampler;
import org.apache.commons.rng.sampling.distribution.NormalizedGaussianSampler;
import org.apache.commons.rng.sampling.distribution.ZigguratSampler;

/**
 * Generate coordinates 
 * uniformly distributed within the unit n-ball.
 *
 * 

Sampling uses:

* *
    *
  • {@link UniformRandomProvider#nextLong()} *
  • {@link UniformRandomProvider#nextDouble()} (only for dimensions above 2) *
* * @since 1.4 */ public abstract class UnitBallSampler implements SharedStateObjectSampler { /** The dimension for 1D sampling. */ private static final int ONE_D = 1; /** The dimension for 2D sampling. */ private static final int TWO_D = 2; /** The dimension for 3D sampling. */ private static final int THREE_D = 3; /** * The multiplier to convert the least significant 53-bits of a {@code long} to a {@code double}. * Taken from o.a.c.rng.core.utils.NumberFactory. * *

This is equivalent to 1.0 / (1L << 53). */ private static final double DOUBLE_MULTIPLIER = 0x1.0p-53d; /** * Sample uniformly from a 1D unit line. */ private static class UnitBallSampler1D extends UnitBallSampler { /** The source of randomness. */ private final UniformRandomProvider rng; /** * @param rng Source of randomness. */ UnitBallSampler1D(UniformRandomProvider rng) { this.rng = rng; } @Override public double[] sample() { return new double[] {makeSignedDouble(rng.nextLong())}; } @Override public UnitBallSampler withUniformRandomProvider(UniformRandomProvider rng) { return new UnitBallSampler1D(rng); } } /** * Sample uniformly from a 2D unit disk. */ private static class UnitBallSampler2D extends UnitBallSampler { /** The source of randomness. */ private final UniformRandomProvider rng; /** * @param rng Source of randomness. */ UnitBallSampler2D(UniformRandomProvider rng) { this.rng = rng; } @Override public double[] sample() { // Generate via rejection method of a circle inside a square of edge length 2. // This should compute approximately 2^2 / pi = 1.27 square positions per sample. double x; double y; do { x = makeSignedDouble(rng.nextLong()); y = makeSignedDouble(rng.nextLong()); } while (x * x + y * y > 1.0); return new double[] {x, y}; } @Override public UnitBallSampler withUniformRandomProvider(UniformRandomProvider rng) { return new UnitBallSampler2D(rng); } } /** * Sample uniformly from a 3D unit ball. This is an non-array based specialisation of * {@link UnitBallSamplerND} for performance. */ private static class UnitBallSampler3D extends UnitBallSampler { /** The standard normal distribution. */ private final NormalizedGaussianSampler normal; /** The exponential distribution (mean=1). */ private final ContinuousSampler exp; /** * @param rng Source of randomness. */ UnitBallSampler3D(UniformRandomProvider rng) { normal = ZigguratSampler.NormalizedGaussian.of(rng); // Require an Exponential(mean=2). // Here we use mean = 1 and scale the output later. exp = ZigguratSampler.Exponential.of(rng); } @Override public double[] sample() { final double x = normal.sample(); final double y = normal.sample(); final double z = normal.sample(); // Include the exponential sample. It has mean 1 so multiply by 2. final double sum = exp.sample() * 2 + x * x + y * y + z * z; // Note: Handle the possibility of a zero sum and invalid inverse if (sum == 0) { return sample(); } final double f = 1.0 / Math.sqrt(sum); return new double[] {x * f, y * f, z * f}; } @Override public UnitBallSampler withUniformRandomProvider(UniformRandomProvider rng) { return new UnitBallSampler3D(rng); } } /** * Sample using ball point picking. * @see Ball point picking */ private static class UnitBallSamplerND extends UnitBallSampler { /** The dimension. */ private final int dimension; /** The standard normal distribution. */ private final NormalizedGaussianSampler normal; /** The exponential distribution (mean=1). */ private final ContinuousSampler exp; /** * @param rng Source of randomness. * @param dimension Space dimension. */ UnitBallSamplerND(UniformRandomProvider rng, int dimension) { this.dimension = dimension; normal = ZigguratSampler.NormalizedGaussian.of(rng); // Require an Exponential(mean=2). // Here we use mean = 1 and scale the output later. exp = ZigguratSampler.Exponential.of(rng); } @Override public double[] sample() { final double[] sample = new double[dimension]; // Include the exponential sample. It has mean 1 so multiply by 2. double sum = exp.sample() * 2; for (int i = 0; i < dimension; i++) { final double x = normal.sample(); sum += x * x; sample[i] = x; } // Note: Handle the possibility of a zero sum and invalid inverse if (sum == 0) { return sample(); } final double f = 1.0 / Math.sqrt(sum); for (int i = 0; i < dimension; i++) { sample[i] *= f; } return sample; } @Override public UnitBallSampler withUniformRandomProvider(UniformRandomProvider rng) { return new UnitBallSamplerND(rng, dimension); } } /** * @return a random Cartesian coordinate within the unit n-ball. */ @Override public abstract double[] sample(); /** {@inheritDoc} */ // Redeclare the signature to return a UnitBallSampler not a SharedStateObjectSampler @Override public abstract UnitBallSampler withUniformRandomProvider(UniformRandomProvider rng); /** * Create a unit n-ball sampler for the given dimension. * Sampled points are uniformly distributed within the unit n-ball. * *

Sampling is supported in dimensions of 1 or above. * * @param rng Source of randomness. * @param dimension Space dimension. * @return the sampler * @throws IllegalArgumentException If {@code dimension <= 0} */ public static UnitBallSampler of(UniformRandomProvider rng, int dimension) { if (dimension <= 0) { throw new IllegalArgumentException("Dimension must be strictly positive"); } else if (dimension == ONE_D) { return new UnitBallSampler1D(rng); } else if (dimension == TWO_D) { return new UnitBallSampler2D(rng); } else if (dimension == THREE_D) { return new UnitBallSampler3D(rng); } return new UnitBallSamplerND(rng, dimension); } /** * Creates a signed double in the range {@code [-1, 1)}. The magnitude is sampled evenly * from the 254 dyadic rationals in the range. * *

Note: This method will not return samples for both -0.0 and 0.0. * * @param bits the bits * @return the double */ private static double makeSignedDouble(long bits) { // As per o.a.c.rng.core.utils.NumberFactory.makeDouble(long) but using a signed // shift of 10 in place of an unsigned shift of 11. // Use the upper 54 bits on the assumption they are more random. // The sign bit is maintained by the signed shift. // The next 53 bits generates a magnitude in the range [0, 2^53) or [-2^53, 0). return (bits >> 10) * DOUBLE_MULTIPLIER; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy