org.apache.commons.rng.sampling.UnitSphereSampler Maven / Gradle / Ivy
Show all versions of commons-rng-sampling Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.NormalizedGaussianSampler;
import org.apache.commons.rng.sampling.distribution.ZigguratSampler;
/**
* Generate vectors
* isotropically located on the surface of a sphere.
*
* Sampling in 2 or more dimensions uses:
*
*
* - {@link UniformRandomProvider#nextLong()}
*
- {@link UniformRandomProvider#nextDouble()}
*
*
* Sampling in 1D uses the sign bit from {@link UniformRandomProvider#nextInt()} to set
* the direction of the vector.
*
* @since 1.1
*/
public class UnitSphereSampler implements SharedStateObjectSampler {
/** The dimension for 1D sampling. */
private static final int ONE_D = 1;
/** The dimension for 2D sampling. */
private static final int TWO_D = 2;
/** The dimension for 3D sampling. */
private static final int THREE_D = 3;
/**
* The mask to extract the second bit from an integer
* (naming starts at bit 1 for the least significant bit).
* The masked integer will have a value 0 or 2.
*/
private static final int MASK_BIT_2 = 0x2;
/** The internal sampler optimised for the dimension. */
private final UnitSphereSampler delegate;
/**
* Sample uniformly from the ends of a 1D unit line.
*/
private static final class UnitSphereSampler1D extends UnitSphereSampler {
/** The source of randomness. */
private final UniformRandomProvider rng;
/**
* @param rng Source of randomness.
*/
UnitSphereSampler1D(UniformRandomProvider rng) {
this.rng = rng;
}
@Override
public double[] sample() {
// Either:
// 1 - 0 = 1
// 1 - 2 = -1
// Use the sign bit
return new double[] {1.0 - ((rng.nextInt() >>> 30) & MASK_BIT_2)};
}
@Override
public UnitSphereSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new UnitSphereSampler1D(rng);
}
}
/**
* Sample uniformly from a 2D unit circle.
* This is a 2D specialisation of the UnitSphereSamplerND.
*/
private static final class UnitSphereSampler2D extends UnitSphereSampler {
/** Sampler used for generating the individual components of the vectors. */
private final NormalizedGaussianSampler sampler;
/**
* @param rng Source of randomness.
*/
UnitSphereSampler2D(UniformRandomProvider rng) {
sampler = ZigguratSampler.NormalizedGaussian.of(rng);
}
@Override
public double[] sample() {
final double x = sampler.sample();
final double y = sampler.sample();
final double sum = x * x + y * y;
if (sum == 0) {
// Zero-norm vector is discarded.
return sample();
}
final double f = 1.0 / Math.sqrt(sum);
return new double[] {x * f, y * f};
}
@Override
public UnitSphereSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new UnitSphereSampler2D(rng);
}
}
/**
* Sample uniformly from a 3D unit sphere.
* This is a 3D specialisation of the UnitSphereSamplerND.
*/
private static final class UnitSphereSampler3D extends UnitSphereSampler {
/** Sampler used for generating the individual components of the vectors. */
private final NormalizedGaussianSampler sampler;
/**
* @param rng Source of randomness.
*/
UnitSphereSampler3D(UniformRandomProvider rng) {
sampler = ZigguratSampler.NormalizedGaussian.of(rng);
}
@Override
public double[] sample() {
final double x = sampler.sample();
final double y = sampler.sample();
final double z = sampler.sample();
final double sum = x * x + y * y + z * z;
if (sum == 0) {
// Zero-norm vector is discarded.
return sample();
}
final double f = 1.0 / Math.sqrt(sum);
return new double[] {x * f, y * f, z * f};
}
@Override
public UnitSphereSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new UnitSphereSampler3D(rng);
}
}
/**
* Sample uniformly from a ND unit sphere.
*/
private static final class UnitSphereSamplerND extends UnitSphereSampler {
/** Space dimension. */
private final int dimension;
/** Sampler used for generating the individual components of the vectors. */
private final NormalizedGaussianSampler sampler;
/**
* @param rng Source of randomness.
* @param dimension Space dimension.
*/
UnitSphereSamplerND(UniformRandomProvider rng, int dimension) {
this.dimension = dimension;
sampler = ZigguratSampler.NormalizedGaussian.of(rng);
}
@Override
public double[] sample() {
final double[] v = new double[dimension];
// Pick a point by choosing a standard Gaussian for each element,
// and then normalize to unit length.
double sum = 0;
for (int i = 0; i < dimension; i++) {
final double x = sampler.sample();
v[i] = x;
sum += x * x;
}
if (sum == 0) {
// Zero-norm vector is discarded.
// Using recursion as it is highly unlikely to generate more
// than a few such vectors. It also protects against infinite
// loop (in case a buggy generator is used), by eventually
// raising a "StackOverflowError".
return sample();
}
final double f = 1 / Math.sqrt(sum);
for (int i = 0; i < dimension; i++) {
v[i] *= f;
}
return v;
}
@Override
public UnitSphereSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new UnitSphereSamplerND(rng, dimension);
}
}
/**
* This instance delegates sampling. Use the factory method
* {@link #of(UniformRandomProvider, int)} to create an optimal sampler.
*
* @param dimension Space dimension.
* @param rng Generator for the individual components of the vectors.
* A shallow copy will be stored in this instance.
* @throws IllegalArgumentException If {@code dimension <= 0}
* @deprecated Use {@link #of(UniformRandomProvider, int)}.
*/
@Deprecated
public UnitSphereSampler(int dimension,
UniformRandomProvider rng) {
this(of(rng, dimension));
}
/**
* Private constructor used by deprecated constructor used to prevent partially
* initialized object if the construction of the delegate throws.
* In future versions the public constructor should be removed and the class made abstract.
*
* @param delegate Delegate.
*/
private UnitSphereSampler(UnitSphereSampler delegate) {
this.delegate = delegate;
}
/**
* Private constructor used by sub-class specialisations.
* In future versions the public constructor should be removed and the class made abstract.
*/
private UnitSphereSampler() {
delegate = null;
}
/**
* @return a random normalized Cartesian vector.
* @since 1.4
*/
@Override
public double[] sample() {
return delegate.sample();
}
/**
* @return a random normalized Cartesian vector.
* @deprecated Use {@link #sample()}.
*/
@Deprecated
public double[] nextVector() {
return sample();
}
/**
* {@inheritDoc}
*
* @since 1.3
*/
@Override
public UnitSphereSampler withUniformRandomProvider(UniformRandomProvider rng) {
return delegate.withUniformRandomProvider(rng);
}
/**
* Create a unit sphere sampler for the given dimension.
*
* @param rng Generator for the individual components of the vectors. A shallow
* copy will be stored in the sampler.
* @param dimension Space dimension.
* @return the sampler
* @throws IllegalArgumentException If {@code dimension <= 0}
*
* @since 1.4
*/
public static UnitSphereSampler of(UniformRandomProvider rng,
int dimension) {
if (dimension <= 0) {
throw new IllegalArgumentException("Dimension must be strictly positive");
} else if (dimension == ONE_D) {
return new UnitSphereSampler1D(rng);
} else if (dimension == TWO_D) {
return new UnitSphereSampler2D(rng);
} else if (dimension == THREE_D) {
return new UnitSphereSampler3D(rng);
}
return new UnitSphereSamplerND(rng, dimension);
}
}