All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.rng.sampling.distribution.BoxMullerGaussianSampler Maven / Gradle / Ivy

Go to download

The Apache Commons RNG Sampling module provides samplers for various distributions.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.rng.sampling.distribution;

import org.apache.commons.rng.UniformRandomProvider;

/**
 * 
 * Box-Muller algorithm for sampling from a Gaussian distribution.
 *
 * 

Sampling uses:

* *
    *
  • {@link UniformRandomProvider#nextDouble()} *
  • {@link UniformRandomProvider#nextLong()} *
* * @since 1.0 * * @deprecated Since version 1.1. Please use {@link BoxMullerNormalizedGaussianSampler} * and {@link GaussianSampler} instead. */ @Deprecated public class BoxMullerGaussianSampler extends SamplerBase implements ContinuousSampler { /** Next gaussian. */ private double nextGaussian = Double.NaN; /** Mean. */ private final double mean; /** standardDeviation. */ private final double standardDeviation; /** Underlying source of randomness. */ private final UniformRandomProvider rng; /** * Create an instance. * * @param rng Generator of uniformly distributed random numbers. * @param mean Mean of the Gaussian distribution. * @param standardDeviation Standard deviation of the Gaussian distribution. * @throws IllegalArgumentException if {@code standardDeviation <= 0} */ public BoxMullerGaussianSampler(UniformRandomProvider rng, double mean, double standardDeviation) { this(mean, InternalUtils.requireStrictlyPositiveFinite(standardDeviation, "standardDeviation"), rng); } /** * @param rng Generator of uniformly distributed random numbers. * @param mean Mean of the Gaussian distribution. * @param standardDeviation Standard deviation of the Gaussian distribution. */ private BoxMullerGaussianSampler(double mean, double standardDeviation, UniformRandomProvider rng) { super(null); this.rng = rng; this.mean = mean; this.standardDeviation = standardDeviation; } /** {@inheritDoc} */ @Override public double sample() { final double random; if (Double.isNaN(nextGaussian)) { // Generate a pair of Gaussian numbers. // Avoid zero for the uniform deviate y. // The extreme tail of the sample is: // y = 2^-53 // r = 8.57167 final double x = rng.nextDouble(); final double y = InternalUtils.makeNonZeroDouble(rng.nextLong()); final double alpha = 2 * Math.PI * x; final double r = Math.sqrt(-2 * Math.log(y)); // Return the first element of the generated pair. random = r * Math.cos(alpha); // Keep second element of the pair for next invocation. nextGaussian = r * Math.sin(alpha); } else { // Use the second element of the pair (generated at the // previous invocation). random = nextGaussian; // Both elements of the pair have been used. nextGaussian = Double.NaN; } return standardDeviation * random + mean; } /** {@inheritDoc} */ @Override public String toString() { return "Box-Muller Gaussian deviate [" + rng.toString() + "]"; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy