org.apache.commons.rng.sampling.distribution.SmallMeanPoissonSampler Maven / Gradle / Ivy
Show all versions of commons-rng-sampling Show documentation
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.rng.sampling.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Sampler for the Poisson distribution.
*
*
* -
* For small means, a Poisson process is simulated using uniform deviates, as described in
*
* Knuth (1969). Seminumerical Algorithms. The Art of Computer Programming,
* Volume 2. Chapter 3.4.1.F.3 Important integer-valued distributions: The Poisson distribution.
* Addison Wesley.
*
* The Poisson process (and hence, the returned value) is bounded by {@code 1000 * mean}.
*
*
*
* This sampler is suitable for {@code mean < 40}.
* For large means, {@link LargeMeanPoissonSampler} should be used instead.
*
* Sampling uses {@link UniformRandomProvider#nextDouble()} and requires on average
* {@code mean + 1} deviates per sample.
*
* @since 1.1
*/
public class SmallMeanPoissonSampler
implements SharedStateDiscreteSampler {
/**
* Pre-compute {@code Math.exp(-mean)}.
* Note: This is the probability of the Poisson sample {@code P(n=0)}.
*/
private final double p0;
/** Pre-compute {@code 1000 * mean} as the upper limit of the sample. */
private final int limit;
/** Underlying source of randomness. */
private final UniformRandomProvider rng;
/**
* Create an instance.
*
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean.
* @throws IllegalArgumentException if {@code mean <= 0} or {@code Math.exp(-mean) == 0}
*/
public SmallMeanPoissonSampler(UniformRandomProvider rng,
double mean) {
this(rng, mean, computeP0(mean));
}
/**
* Instantiates a new small mean poisson sampler.
*
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean.
* @param p0 {@code Math.exp(-mean)}.
*/
private SmallMeanPoissonSampler(UniformRandomProvider rng,
double mean,
double p0) {
this.rng = rng;
this.p0 = p0;
// The returned sample is bounded by 1000 * mean
limit = (int) Math.ceil(1000 * mean);
}
/**
* @param rng Generator of uniformly distributed random numbers.
* @param source Source to copy.
*/
private SmallMeanPoissonSampler(UniformRandomProvider rng,
SmallMeanPoissonSampler source) {
this.rng = rng;
p0 = source.p0;
limit = source.limit;
}
/** {@inheritDoc} */
@Override
public int sample() {
int n = 0;
double r = 1;
while (n < limit) {
r *= rng.nextDouble();
if (r >= p0) {
n++;
} else {
break;
}
}
return n;
}
/** {@inheritDoc} */
@Override
public String toString() {
return "Small Mean Poisson deviate [" + rng.toString() + "]";
}
/**
* {@inheritDoc}
*
* @since 1.3
*/
@Override
public SharedStateDiscreteSampler withUniformRandomProvider(UniformRandomProvider rng) {
return new SmallMeanPoissonSampler(rng, this);
}
/**
* Creates a new sampler for the Poisson distribution.
*
* @param rng Generator of uniformly distributed random numbers.
* @param mean Mean of the distribution.
* @return the sampler
* @throws IllegalArgumentException if {@code mean <= 0} or {@code Math.exp(-mean) == 0}.
* @since 1.3
*/
public static SharedStateDiscreteSampler of(UniformRandomProvider rng,
double mean) {
return new SmallMeanPoissonSampler(rng, mean);
}
/**
* Compute {@code Math.exp(-mean)}.
*
* This method exists to raise an exception before invocation of the
* private constructor; this mitigates Finalizer attacks
* (see SpotBugs CT_CONSTRUCTOR_THROW).
*
* @param mean Mean.
* @return the mean
* @throws IllegalArgumentException if {@code mean <= 0} or {@code Math.exp(-mean) == 0}
*/
private static double computeP0(double mean) {
InternalUtils.requireStrictlyPositive(mean, "mean");
final double p0 = Math.exp(-mean);
if (p0 > 0) {
return p0;
}
// This excludes NaN values for the mean
throw new IllegalArgumentException("No p(x=0) probability for mean: " + mean);
}
}