All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.rng.sampling.shape.TriangleSampler Maven / Gradle / Ivy

Go to download

The Apache Commons RNG Sampling module provides samplers for various distributions.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.rng.sampling.shape;

import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.SharedStateObjectSampler;

/**
 * Generate points 
 * uniformly distributed within a triangle.
 *
 * 
    *
  • * Uses the algorithm described in: *
    * Turk, G. Generating random points in triangles. Glassner, A. S. (ed) (1990).
    * Graphic Gems Academic Press, pp. 24-28. *
    *
  • *
* *

Sampling uses:

* *
    *
  • {@link UniformRandomProvider#nextDouble()} *
* * @since 1.4 */ public abstract class TriangleSampler implements SharedStateObjectSampler { /** The dimension for 2D sampling. */ private static final int TWO_D = 2; /** The dimension for 3D sampling. */ private static final int THREE_D = 3; /** The source of randomness. */ private final UniformRandomProvider rng; // The following code defines a plane as the set of all points r: // r = r0 + sv + tw // where s and t range over all real numbers, v and w are given linearly independent // vectors defining the plane, and r0 is an arbitrary (but fixed) point in the plane. // // Sampling from a triangle (a,b,c) is performed when: // s and t are in [0, 1] and s+t <= 1; // r0 is one triangle vertex (a); // and v (b-a) and w (c-a) are vectors from the other two vertices to r0. // // For robustness with large value coordinates the point r is computed without // the requirement to compute v and w which can overflow: // // a + s(b-a) + t(c-a) == a + sb - sa + tc - ta // == a(1 - s - t) + sb + tc // // Assuming the uniform deviates are from the 2^53 dyadic rationals in [0, 1) if s+t <= 1 // then 1 - (s+t) is exact. Sampling is then done using: // // if (s + t <= 1): // p = a(1 - (s + t)) + sb + tc // else: // p = a(1 - (1 - s) - (1 - t)) + (1 - s)b + (1 - t)c // p = a(s - 1 + t) + (1 - s)b + (1 - t)c // // Note do not simplify (1 - (1 - s) - (1 - t)) to (s + t - 1) as s+t > 1 and has potential // loss of a single bit of randomness due to rounding. An exact sum is s - 1 + t. /** * Sample uniformly from a triangle in 2D. This is an non-array based specialisation of * {@link TriangleSamplerND} for performance. */ private static final class TriangleSampler2D extends TriangleSampler { /** The x component of vertex a. */ private final double ax; /** The y component of vertex a. */ private final double ay; /** The x component of vertex b. */ private final double bx; /** The y component of vertex b. */ private final double by; /** The x component of vertex c. */ private final double cx; /** The y component of vertex c. */ private final double cy; /** * @param rng Source of randomness. * @param a The first vertex. * @param b The second vertex. * @param c The third vertex. */ TriangleSampler2D(UniformRandomProvider rng, double[] a, double[] b, double[] c) { super(rng); ax = a[0]; ay = a[1]; bx = b[0]; by = b[1]; cx = c[0]; cy = c[1]; } /** * @param rng Generator of uniformly distributed random numbers * @param source Source to copy. */ TriangleSampler2D(UniformRandomProvider rng, TriangleSampler2D source) { super(rng); ax = source.ax; ay = source.ay; bx = source.bx; by = source.by; cx = source.cx; cy = source.cy; } @Override public double[] createSample(double p1msmt, double s, double t) { return new double[] {p1msmt * ax + s * bx + t * cx, p1msmt * ay + s * by + t * cy}; } @Override public TriangleSampler withUniformRandomProvider(UniformRandomProvider rng) { return new TriangleSampler2D(rng, this); } } /** * Sample uniformly from a triangle in 3D. This is an non-array based specialisation of * {@link TriangleSamplerND} for performance. */ private static final class TriangleSampler3D extends TriangleSampler { /** The x component of vertex a. */ private final double ax; /** The y component of vertex a. */ private final double ay; /** The z component of vertex a. */ private final double az; /** The x component of vertex b. */ private final double bx; /** The y component of vertex b. */ private final double by; /** The z component of vertex b. */ private final double bz; /** The x component of vertex c. */ private final double cx; /** The y component of vertex c. */ private final double cy; /** The z component of vertex c. */ private final double cz; /** * @param rng Source of randomness. * @param a The first vertex. * @param b The second vertex. * @param c The third vertex. */ TriangleSampler3D(UniformRandomProvider rng, double[] a, double[] b, double[] c) { super(rng); ax = a[0]; ay = a[1]; az = a[2]; bx = b[0]; by = b[1]; bz = b[2]; cx = c[0]; cy = c[1]; cz = c[2]; } /** * @param rng Generator of uniformly distributed random numbers * @param source Source to copy. */ TriangleSampler3D(UniformRandomProvider rng, TriangleSampler3D source) { super(rng); ax = source.ax; ay = source.ay; az = source.az; bx = source.bx; by = source.by; bz = source.bz; cx = source.cx; cy = source.cy; cz = source.cz; } @Override public double[] createSample(double p1msmt, double s, double t) { return new double[] {p1msmt * ax + s * bx + t * cx, p1msmt * ay + s * by + t * cy, p1msmt * az + s * bz + t * cz}; } @Override public TriangleSampler withUniformRandomProvider(UniformRandomProvider rng) { return new TriangleSampler3D(rng, this); } } /** * Sample uniformly from a triangle in ND. */ private static final class TriangleSamplerND extends TriangleSampler { /** The first vertex. */ private final double[] a; /** The second vertex. */ private final double[] b; /** The third vertex. */ private final double[] c; /** * @param rng Source of randomness. * @param a The first vertex. * @param b The second vertex. * @param c The third vertex. */ TriangleSamplerND(UniformRandomProvider rng, double[] a, double[] b, double[] c) { super(rng); // Defensive copy this.a = a.clone(); this.b = b.clone(); this.c = c.clone(); } /** * @param rng Generator of uniformly distributed random numbers * @param source Source to copy. */ TriangleSamplerND(UniformRandomProvider rng, TriangleSamplerND source) { super(rng); // Shared state is immutable a = source.a; b = source.b; c = source.c; } @Override public double[] createSample(double p1msmt, double s, double t) { final double[] x = new double[a.length]; for (int i = 0; i < x.length; i++) { x[i] = p1msmt * a[i] + s * b[i] + t * c[i]; } return x; } @Override public TriangleSampler withUniformRandomProvider(UniformRandomProvider rng) { return new TriangleSamplerND(rng, this); } } /** * @param rng Source of randomness. */ TriangleSampler(UniformRandomProvider rng) { this.rng = rng; } /** * @return a random Cartesian coordinate within the triangle. */ @Override public double[] sample() { final double s = rng.nextDouble(); final double t = rng.nextDouble(); final double spt = s + t; if (spt > 1) { // Transform: s1 = 1 - s; t1 = 1 - t. // Compute: 1 - s1 - t1 // Do not assume (1 - (1-s) - (1-t)) is (s + t - 1), i.e. (spt - 1.0), // to avoid loss of a random bit due to rounding when s + t > 1. // An exact sum is (s - 1 + t). return createSample(s - 1.0 + t, 1.0 - s, 1.0 - t); } // Here s + t is exact so can be subtracted to make 1 - s - t return createSample(1.0 - spt, s, t); } /** * Creates the sample given the random variates {@code s} and {@code t} in the * interval {@code [0, 1]} and {@code s + t <= 1}. The sum {@code 1 - s - t} is provided. * The sample can be obtained from the triangle abc using: *
     * p = a(1 - s - t) + sb + tc
     * 
* * @param p1msmt plus 1 minus s minus t (1 - s - t) * @param s the first variate s * @param t the second variate t * @return the sample */ protected abstract double[] createSample(double p1msmt, double s, double t); /** {@inheritDoc} */ // Redeclare the signature to return a TriangleSampler not a SharedStateObjectSampler @Override public abstract TriangleSampler withUniformRandomProvider(UniformRandomProvider rng); /** * Create a triangle sampler with vertices {@code a}, {@code b} and {@code c}. * Sampled points are uniformly distributed within the triangle. * *

Sampling is supported in dimensions of 2 or above. Samples will lie in the * plane (2D Euclidean space) defined by using the three triangle vertices to * create two vectors starting at a point in the plane and orientated in * different directions along the plane. * *

No test for collinear points is performed. If the points are collinear the sampling * distribution is undefined. * * @param rng Source of randomness. * @param a The first vertex. * @param b The second vertex. * @param c The third vertex. * @return the sampler * @throws IllegalArgumentException If the vertices do not have the same * dimension; the dimension is less than 2; or vertices have non-finite coordinates */ public static TriangleSampler of(UniformRandomProvider rng, double[] a, double[] b, double[] c) { final int dimension = a.length; if (dimension != b.length || dimension != c.length) { throw new IllegalArgumentException( new StringBuilder("Mismatch of vertex dimensions: ").append(dimension).append(',') .append(b.length).append(',') .append(c.length).toString()); } // Detect non-finite vertices Coordinates.requireFinite(a, "Vertex a"); Coordinates.requireFinite(b, "Vertex b"); Coordinates.requireFinite(c, "Vertex c"); // Low dimension specialisations if (dimension == TWO_D) { return new TriangleSampler2D(rng, a, b, c); } else if (dimension == THREE_D) { return new TriangleSampler3D(rng, a, b, c); } else if (dimension > THREE_D) { return new TriangleSamplerND(rng, a, b, c); } // Less than 2D throw new IllegalArgumentException( "Unsupported dimension: " + dimension); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy