All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.descriptive.GeometricMean Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.descriptive;

/**
 * Computes the geometric mean of the available values. Uses the following definition
 * of the geometric mean:
 *
 * 

\[ \left(\prod_{i=1}^n x_i\right)^\frac{1}{n} \] * *

where \( n \) is the number of samples. This implementation uses the log scale: * *

\[ \exp{\left( {\frac{1}{n}\sum_{i=1}^n \ln x_i} \right)} \] * *

    *
  • The result is {@code NaN} if no values are added. *
  • The result is {@code NaN} if any of the values is {@code NaN}. *
  • The result is {@code NaN} if any of the values is negative. *
  • The result is {@code +infinity} if all values are in the range {@code (0, +infinity]} * and at least one value is {@code +infinity}. *
  • The result is {@code 0} if all values are in the range {@code [0, +infinity)} * and at least one value is zero. *
  • The result is {@code NaN} if all values are in the range {@code [0, +infinity]} * and at least one value is zero, and one value is {@code +infinity}. *
* *

Supports up to 263 (exclusive) observations. * This implementation does not check for overflow of the count. * *

This class is designed to work with (though does not require) * {@linkplain java.util.stream streams}. * *

This instance is not thread safe. * If multiple threads access an instance of this class concurrently, * and at least one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally. * *

However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept} * and {@link StatisticAccumulator#combine(StatisticResult) combine} * as {@code accumulator} and {@code combiner} functions of * {@link java.util.stream.Collector Collector} on a parallel stream, * because the parallel instance of {@link java.util.stream.Stream#collect Stream.collect()} * provides the necessary partitioning, isolation, and merging of results for * safe and efficient parallel execution. * * @see Geometric mean (Wikipedia) * @see SumOfLogs * @since 1.1 */ public final class GeometricMean implements DoubleStatistic, StatisticAccumulator { /** Count of values that have been added. */ private long n; /** * Sum of logs used to compute the geometric mean. */ private final SumOfLogs sumOfLogs; /** * Create an instance. */ private GeometricMean() { this(SumOfLogs.create(), 0); } /** * Create an instance. * * @param sumOfLogs Sum of logs. * @param n Count of values. */ private GeometricMean(SumOfLogs sumOfLogs, long n) { this.sumOfLogs = sumOfLogs; this.n = n; } /** * Creates an instance. * *

The initial result is {@code NaN}. * * @return {@code GeometricMean} instance. */ public static GeometricMean create() { return new GeometricMean(); } /** * Returns an instance populated using the input {@code values}. * *

When the input is an empty array, the result is {@code NaN}. * * @param values Values. * @return {@code GeometricMean} instance. */ public static GeometricMean of(double... values) { return new GeometricMean(SumOfLogs.of(values), values.length); } /** * Returns an instance populated using the input {@code values}. * *

When the input is an empty array, the result is {@code NaN}. * * @param values Values. * @return {@code GeometricMean} instance. */ public static GeometricMean of(int... values) { return new GeometricMean(SumOfLogs.of(values), values.length); } /** * Returns an instance populated using the input {@code values}. * *

When the input is an empty array, the result is {@code NaN}. * * @param values Values. * @return {@code GeometricMean} instance. */ public static GeometricMean of(long... values) { return new GeometricMean(SumOfLogs.of(values), values.length); } /** * Updates the state of the statistic to reflect the addition of {@code value}. * * @param value Value. */ @Override public void accept(double value) { n++; sumOfLogs.accept(value); } /** * Gets the geometric mean of all input values. * *

When no values have been added, the result is {@code NaN}. * * @return geometric mean of all values. */ @Override public double getAsDouble() { return computeGeometricMean(n, sumOfLogs); } @Override public GeometricMean combine(GeometricMean other) { n += other.n; sumOfLogs.combine(other.sumOfLogs); return this; } /** * Compute the geometric mean. * * @param n Count of values. * @param sumOfLogs Sum of logs. * @return the geometric mean */ static double computeGeometricMean(long n, SumOfLogs sumOfLogs) { return n == 0 ? Double.NaN : Math.exp(sumOfLogs.getAsDouble() / n); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy