All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.descriptive.IntVariance Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.descriptive;

import java.math.BigInteger;

/**
 * Computes the variance of the available values. The default implementation uses the
 * following definition of the sample variance:
 *
 * 

\[ \tfrac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2 \] * *

where \( \overline{x} \) is the sample mean, and \( n \) is the number of samples. * *

    *
  • The result is {@code NaN} if no values are added. *
  • The result is zero if there is one value in the data set. *
* *

The use of the term \( n − 1 \) is called Bessel's correction. This is an unbiased * estimator of the variance of a hypothetical infinite population. If the * {@link #setBiased(boolean) biased} option is enabled the normalisation factor is * changed to \( \frac{1}{n} \) for a biased estimator of the sample variance. * *

The implementation uses an exact integer sum to compute the scaled (by \( n \)) * sum of squared deviations from the mean; this is normalised by the scaled correction factor. * *

\[ \frac {n \times \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2}{n \times (n - 1)} \] * *

Supports up to 263 (exclusive) observations. * This implementation does not check for overflow of the count. * *

This class is designed to work with (though does not require) * {@linkplain java.util.stream streams}. * *

This implementation is not thread safe. * If multiple threads access an instance of this class concurrently, * and at least one of the threads invokes the {@link java.util.function.IntConsumer#accept(int) accept} or * {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally. * *

However, it is safe to use {@link java.util.function.IntConsumer#accept(int) accept} * and {@link StatisticAccumulator#combine(StatisticResult) combine} * as {@code accumulator} and {@code combiner} functions of * {@link java.util.stream.Collector Collector} on a parallel stream, * because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()} * provides the necessary partitioning, isolation, and merging of results for * safe and efficient parallel execution. * * @see variance (Wikipedia) * @see * Algorithms for computing the variance (Wikipedia) * @see Bessel's correction * @since 1.1 */ public final class IntVariance implements IntStatistic, StatisticAccumulator { /** Small array sample size. * Used to avoid computing with UInt96 then converting to UInt128. */ static final int SMALL_SAMPLE = 10; /** Sum of the squared values. */ private final UInt128 sumSq; /** Sum of the values. */ private final Int128 sum; /** Count of values that have been added. */ private long n; /** Flag to control if the statistic is biased, or should use a bias correction. */ private boolean biased; /** * Create an instance. */ private IntVariance() { this(UInt128.create(), Int128.create(), 0); } /** * Create an instance. * * @param sumSq Sum of the squared values. * @param sum Sum of the values. * @param n Count of values that have been added. */ private IntVariance(UInt128 sumSq, Int128 sum, int n) { this.sumSq = sumSq; this.sum = sum; this.n = n; } /** * Creates an instance. * *

The initial result is {@code NaN}. * * @return {@code IntVariance} instance. */ public static IntVariance create() { return new IntVariance(); } /** * Returns an instance populated using the input {@code values}. * * @param values Values. * @return {@code IntVariance} instance. */ public static IntVariance of(int... values) { // Small arrays can be processed using the object if (values.length < SMALL_SAMPLE) { final IntVariance stat = new IntVariance(); for (final int x : values) { stat.accept(x); } return stat; } // Arrays can be processed using specialised counts knowing the maximum limit // for an array is 2^31 values. long s = 0; final UInt96 ss = UInt96.create(); // Process pairs as we know two maximum value int^2 will not overflow // an unsigned long. final int end = values.length & ~0x1; for (int i = 0; i < end; i += 2) { final long x = values[i]; final long y = values[i + 1]; s += x + y; ss.addPositive(x * x + y * y); } if (end < values.length) { final long x = values[end]; s += x; ss.addPositive(x * x); } // Convert return new IntVariance(UInt128.of(ss), Int128.of(s), values.length); } /** * Updates the state of the statistic to reflect the addition of {@code value}. * * @param value Value. */ @Override public void accept(int value) { sumSq.addPositive((long) value * value); sum.add(value); n++; } /** * Gets the variance of all input values. * *

When no values have been added, the result is {@code NaN}. * * @return variance of all values. */ @Override public double getAsDouble() { return computeVarianceOrStd(sumSq, sum, n, biased, false); } /** * Compute the variance (or standard deviation). * *

The {@code std} flag controls if the result is returned as the standard deviation * using the {@link Math#sqrt(double) square root} function. * * @param sumSq Sum of the squared values. * @param sum Sum of the values. * @param n Count of values that have been added. * @param biased Flag to control if the statistic is biased, or should use a bias correction. * @param std Flag to control if the statistic is the standard deviation. * @return the variance (or standard deviation) */ static double computeVarianceOrStd(UInt128 sumSq, Int128 sum, long n, boolean biased, boolean std) { if (n == 0) { return Double.NaN; } // Avoid a divide by zero if (n == 1) { return 0; } // Sum-of-squared deviations: sum(x^2) - sum(x)^2 / n // Sum-of-squared deviations precursor: n * sum(x^2) - sum(x)^2 // The precursor is computed in integer precision. // The divide uses double precision. // This ensures we avoid cancellation in the difference and use a fast divide. // The result is limited to by the rounding in the double computation. final double diff = computeSSDevN(sumSq, sum, n); final long n0 = biased ? n : n - 1; final double v = diff / IntMath.unsignedMultiplyToDouble(n, n0); if (std) { return Math.sqrt(v); } return v; } /** * Compute the sum-of-squared deviations multiplied by the count of values: * {@code n * sum(x^2) - sum(x)^2}. * * @param sumSq Sum of the squared values. * @param sum Sum of the values. * @param n Count of values that have been added. * @return the sum-of-squared deviations precursor */ private static double computeSSDevN(UInt128 sumSq, Int128 sum, long n) { // Compute the term if possible using fast integer arithmetic. // 128-bit sum(x^2) * n will be OK when the upper 32-bits are zero. // 128-bit sum(x)^2 will be OK when the upper 64-bits are zero. // Both are safe when n < 2^32. if ((n >>> Integer.SIZE) == 0) { return sumSq.unsignedMultiply((int) n).subtract(sum.squareLow()).toDouble(); } else { return sumSq.toBigInteger().multiply(BigInteger.valueOf(n)) .subtract(square(sum.toBigInteger())).doubleValue(); } } /** * Compute the sum of the squared deviations from the mean. * *

This is a helper method used in higher order moments. * * @return the sum of the squared deviations */ double computeSumOfSquaredDeviations() { return computeSSDevN(sumSq, sum, n) / n; } /** * Compute the mean. * *

This is a helper method used in higher order moments. * * @return the mean */ double computeMean() { return IntMean.computeMean(sum, n); } /** * Convenience method to square a BigInteger. * * @param x Value * @return x^2 */ private static BigInteger square(BigInteger x) { return x.multiply(x); } @Override public IntVariance combine(IntVariance other) { sumSq.add(other.sumSq); sum.add(other.sum); n += other.n; return this; } /** * Sets the value of the biased flag. The default value is {@code false}. * *

If {@code false} the sum of squared deviations from the sample mean is normalised by * {@code n - 1} where {@code n} is the number of samples. This is Bessel's correction * for an unbiased estimator of the variance of a hypothetical infinite population. * *

If {@code true} the sum of squared deviations is normalised by the number of samples * {@code n}. * *

Note: This option only applies when {@code n > 1}. The variance of {@code n = 1} is * always 0. * *

This flag only controls the final computation of the statistic. The value of this flag * will not affect compatibility between instances during a {@link #combine(IntVariance) combine} * operation. * * @param v Value. * @return {@code this} instance */ public IntVariance setBiased(boolean v) { biased = v; return this; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy