org.apache.commons.statistics.descriptive.Median Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.descriptive;
import java.util.Objects;
import org.apache.commons.numbers.arrays.Selection;
/**
* Returns the median of the available values.
*
* For values of length {@code n}, let {@code k = n / 2}:
*
* - The result is {@code NaN} if {@code n = 0}.
*
- The result is {@code values[k]} if {@code n} is odd.
*
- The result is {@code (values[k - 1] + values[k]) / 2} if {@code n} is even.
*
*
* This implementation respects the ordering imposed by
* {@link Double#compare(double, double)} for {@code NaN} values. If a {@code NaN} occurs
* in the selected positions in the fully sorted values then the result is {@code NaN}.
*
*
The {@link NaNPolicy} can be used to change the behaviour on {@code NaN} values.
*
*
Instances of this class are immutable and thread-safe.
*
* @see #with(NaNPolicy)
* @see Median (Wikipedia)
* @since 1.1
*/
public final class Median {
/** Default instance. */
private static final Median DEFAULT = new Median(false, NaNPolicy.INCLUDE);
/** Flag to indicate if the data should be copied. */
private final boolean copy;
/** NaN policy for floating point data. */
private final NaNPolicy nanPolicy;
/** Transformer for NaN data. */
private final NaNTransformer nanTransformer;
/**
* @param copy Flag to indicate if the data should be copied.
* @param nanPolicy NaN policy.
*/
private Median(boolean copy, NaNPolicy nanPolicy) {
this.copy = copy;
this.nanPolicy = nanPolicy;
nanTransformer = NaNTransformers.createNaNTransformer(nanPolicy, copy);
}
/**
* Return a new instance with the default options.
*
*
* - {@linkplain #withCopy(boolean) Copy = false}
*
- {@linkplain #with(NaNPolicy) NaN policy = include}
*
*
* Note: The default options configure for processing in-place and including
* {@code NaN} values in the data. This is the most efficient mode and has the
* smallest memory consumption.
*
* @return the median implementation
* @see #withCopy(boolean)
* @see #with(NaNPolicy)
*/
public static Median withDefaults() {
return DEFAULT;
}
/**
* Return an instance with the configured copy behaviour. If {@code false} then
* the input array will be modified by the call to evaluate the median; otherwise
* the computation uses a copy of the data.
*
* @param v Value.
* @return an instance
*/
public Median withCopy(boolean v) {
return new Median(v, nanPolicy);
}
/**
* Return an instance with the configured {@link NaNPolicy}.
*
*
Note: This implementation respects the ordering imposed by
* {@link Double#compare(double, double)} for {@code NaN} values: {@code NaN} is
* considered greater than all other values, and all {@code NaN} values are equal. The
* {@link NaNPolicy} changes the computation of the statistic in the presence of
* {@code NaN} values.
*
*
* - {@link NaNPolicy#INCLUDE}: {@code NaN} values are moved to the end of the data;
* the size of the data includes the {@code NaN} values and the median will be
* {@code NaN} if any value used for median interpolation is {@code NaN}.
*
- {@link NaNPolicy#EXCLUDE}: {@code NaN} values are moved to the end of the data;
* the size of the data excludes the {@code NaN} values and the median will
* never be {@code NaN} for non-zero size. If all data are {@code NaN} then the size is zero
* and the result is {@code NaN}.
*
- {@link NaNPolicy#ERROR}: An exception is raised if the data contains {@code NaN}
* values.
*
*
* Note that the result is identical for all policies if no {@code NaN} values are present.
*
* @param v Value.
* @return an instance
*/
public Median with(NaNPolicy v) {
return new Median(copy, Objects.requireNonNull(v));
}
/**
* Evaluate the median.
*
*
Note: This method may partially sort the input values if not configured to
* {@link #withCopy(boolean) copy} the input data.
*
* @param values Values.
* @return the median
*/
public double evaluate(double[] values) {
// Floating-point data handling
final int[] bounds = new int[1];
final double[] x = nanTransformer.apply(values, bounds);
final int n = bounds[0];
// Special cases
if (n <= 2) {
switch (n) {
case 2:
// Sorting the array matches the behaviour of Quantile for n==2
// Handle NaN and signed zeros
if (Double.compare(x[1], x[0]) < 0) {
final double t = x[0];
x[0] = x[1];
x[1] = t;
}
return Interpolation.mean(x[0], x[1]);
case 1:
return x[0];
default:
return Double.NaN;
}
}
// Median index
final int m = n >>> 1;
// Odd
if ((n & 0x1) == 1) {
Selection.select(x, 0, n, m);
return x[m];
}
// Even: require (m-1, m)
Selection.select(x, 0, n, new int[] {m - 1, m});
return Interpolation.mean(x[m - 1], x[m]);
}
/**
* Evaluate the median.
*
*
Note: This method may partially sort the input values if not configured to
* {@link #withCopy(boolean) copy} the input data.
*
* @param values Values.
* @return the median
*/
public double evaluate(int[] values) {
final int[] x = copy ? values.clone() : values;
final int n = values.length;
// Special cases
if (n <= 2) {
switch (n) {
case 2:
// Sorting the array matches the behaviour of Quantile for n==2
if (x[1] < x[0]) {
final int t = x[0];
x[0] = x[1];
x[1] = t;
}
return Interpolation.mean(x[0], x[1]);
case 1:
return x[0];
default:
return Double.NaN;
}
}
// Median index
final int m = n >>> 1;
// Odd
if ((n & 0x1) == 1) {
Selection.select(x, 0, n, m);
return x[m];
}
// Even: require (m-1, m)
Selection.select(x, 0, n, new int[] {m - 1, m});
return Interpolation.mean(x[m - 1], x[m]);
}
}