org.apache.commons.statistics.descriptive.SumOfSquaredDeviations Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.descriptive;
/**
* Computes the sum of squared deviations from the sample mean. This
* statistic is related to the second moment.
*
* The following recursive updating formula is used:
*
Let
*
* - dev = (current obs - previous mean)
* - n = number of observations (including current obs)
*
* Then
*
new value = old value + dev^2 * (n - 1) / n
*
returns the sum of squared deviations of all values seen so far.
*
*
Supports up to 263 (exclusive) observations.
* This implementation does not check for overflow of the count.
*
*
Note that this implementation is not synchronized. If
* multiple threads access an instance of this class concurrently, and at least
* one of the threads invokes the {@link java.util.function.DoubleConsumer#accept(double) accept} or
* {@link StatisticAccumulator#combine(StatisticResult) combine} method, it must be synchronized externally.
*
*
However, it is safe to use {@link java.util.function.DoubleConsumer#accept(double) accept}
* and {@link StatisticAccumulator#combine(StatisticResult) combine}
* as {@code accumulator} and {@code combiner} functions of
* {@link java.util.stream.Collector Collector} on a parallel stream,
* because the parallel implementation of {@link java.util.stream.Stream#collect Stream.collect()}
* provides the necessary partitioning, isolation, and merging of results for
* safe and efficient parallel execution.
*
*
References:
*
* - Chan, Golub and Levesque (1983)
* Algorithms for Computing the Sample Variance: Analysis and Recommendations.
* American Statistician, 37, 242-247.
* doi: 10.2307/2683386
*
*
* @since 1.1
*/
class SumOfSquaredDeviations extends FirstMoment {
/** Sum of squared deviations of the values that have been added. */
protected double sumSquaredDev;
/**
* Create an instance.
*/
SumOfSquaredDeviations() {
// No-op
}
/**
* Copy constructor.
*
* @param source Source to copy.
*/
SumOfSquaredDeviations(SumOfSquaredDeviations source) {
super(source);
sumSquaredDev = source.sumSquaredDev;
}
/**
* Create an instance with the given sum of squared deviations and first moment.
*
* @param sumSquaredDev Sum of squared deviations.
* @param m1 First moment.
*/
private SumOfSquaredDeviations(double sumSquaredDev, FirstMoment m1) {
super(m1);
this.sumSquaredDev = sumSquaredDev;
}
/**
* Create an instance with the given sum of squared deviations and first moment.
*
* This constructor is used when creating the moment from integer values.
*
* @param sumSquaredDev Sum of squared deviations.
* @param m1 First moment.
* @param n Count of values.
*/
SumOfSquaredDeviations(double sumSquaredDev, double m1, long n) {
super(m1, n);
this.sumSquaredDev = sumSquaredDev;
}
/**
* Returns an instance populated using the input {@code values}.
*
*
Note: {@code SumOfSquaredDeviations} computed using {@link #accept accept} may be
* different from this instance.
*
* @param values Values.
* @return {@code SumOfSquaredDeviations} instance.
*/
static SumOfSquaredDeviations of(double... values) {
if (values.length == 0) {
return new SumOfSquaredDeviations();
}
return create(FirstMoment.of(values), values);
}
/**
* Creates the sum of squared deviations.
*
*
Uses the provided {@code sum} to create the first moment.
* This method is used by {@link DoubleStatistics} using a sum that can be reused
* for the {@link Sum} statistic.
*
* @param sum Sum of the values.
* @param values Values.
* @return {@code SumOfSquaredDeviations} instance.
*/
static SumOfSquaredDeviations create(org.apache.commons.numbers.core.Sum sum, double[] values) {
if (values.length == 0) {
return new SumOfSquaredDeviations();
}
return create(FirstMoment.create(sum, values), values);
}
/**
* Creates the sum of squared deviations.
*
* @param m1 First moment.
* @param values Values.
* @return {@code SumOfSquaredDeviations} instance.
*/
private static SumOfSquaredDeviations create(FirstMoment m1, double[] values) {
// "Corrected two-pass algorithm"
// See: Chan et al (1983) Equation 1.7
final double xbar = m1.getFirstMoment();
if (!Double.isFinite(xbar)) {
return new SumOfSquaredDeviations(Double.NaN, m1);
}
double s = 0;
double ss = 0;
for (final double x : values) {
final double dx = x - xbar;
s += dx;
ss += dx * dx;
}
// The sum of squared deviations is ss - (s * s / n).
// The second term ideally should be zero; in practice it is a good approximation
// of the error in the first term.
// To prevent sumSquaredDev from spuriously attaining a NaN value
// when ss is infinite, assign it an infinite value which is its intended value.
final double sumSquaredDev = ss == Double.POSITIVE_INFINITY ?
Double.POSITIVE_INFINITY :
ss - (s * s / values.length);
return new SumOfSquaredDeviations(sumSquaredDev, m1);
}
/**
* Updates the state of the statistic to reflect the addition of {@code value}.
*
* @param value Value.
*/
@Override
public void accept(double value) {
// "Updating one-pass algorithm"
// See: Chan et al (1983) Equation 1.3b
super.accept(value);
// Note: account for the half-deviation representation by scaling by 4=2^2
sumSquaredDev += (n - 1) * dev * nDev * 4;
}
/**
* Gets the sum of squared deviations of all input values.
*
* @return sum of squared deviations of all values.
*/
double getSumOfSquaredDeviations() {
return Double.isFinite(getFirstMoment()) ? sumSquaredDev : Double.NaN;
}
/**
* Combines the state of another {@code SumOfSquaredDeviations} into this one.
*
* @param other Another {@code SumOfSquaredDeviations} to be combined.
* @return {@code this} instance after combining {@code other}.
*/
SumOfSquaredDeviations combine(SumOfSquaredDeviations other) {
final long m = other.n;
if (n == 0) {
sumSquaredDev = other.sumSquaredDev;
} else if (m != 0) {
// "Updating one-pass algorithm"
// See: Chan et al (1983) Equation 1.5b (modified for the mean)
final double diffOfMean = getFirstMomentDifference(other);
final double sqDiffOfMean = diffOfMean * diffOfMean;
// Enforce symmetry
sumSquaredDev = (sumSquaredDev + other.sumSquaredDev) +
sqDiffOfMean * (((double) n * m) / ((double) n + m));
}
super.combine(other);
return this;
}
}