org.apache.commons.statistics.distribution.BetaDistribution Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.numbers.gamma.RegularizedBeta;
import org.apache.commons.numbers.gamma.LogBeta;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.ChengBetaSampler;
/**
* Implementation of the beta distribution.
*
* The probability density function of \( X \) is:
*
*
\[ f(x; \alpha, \beta) = \frac{1}{ B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1} \]
*
*
for \( \alpha > 0 \),
* \( \beta > 0 \), \( x \in [0, 1] \), and
* the beta function, \( B \), is a normalization constant:
*
*
\[ B(\alpha, \beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \]
*
*
where \( \Gamma \) is the gamma function.
*
*
\( \alpha \) and \( \beta \) are shape parameters.
*
* @see Beta distribution (Wikipedia)
* @see Beta distribution (MathWorld)
*/
public final class BetaDistribution extends AbstractContinuousDistribution {
/** First shape parameter. */
private final double alpha;
/** Second shape parameter. */
private final double beta;
/** Normalizing factor used in log density computations. log(beta(a, b)). */
private final double logBeta;
/** Cached value for inverse probability function. */
private final double mean;
/** Cached value for inverse probability function. */
private final double variance;
/**
* @param alpha First shape parameter (must be positive).
* @param beta Second shape parameter (must be positive).
*/
private BetaDistribution(double alpha,
double beta) {
this.alpha = alpha;
this.beta = beta;
logBeta = LogBeta.value(alpha, beta);
final double alphabetasum = alpha + beta;
mean = alpha / alphabetasum;
variance = (alpha * beta) / ((alphabetasum * alphabetasum) * (alphabetasum + 1));
}
/**
* Creates a beta distribution.
*
* @param alpha First shape parameter (must be positive).
* @param beta Second shape parameter (must be positive).
* @return the distribution
* @throws IllegalArgumentException if {@code alpha <= 0} or {@code beta <= 0}.
*/
public static BetaDistribution of(double alpha,
double beta) {
if (alpha <= 0) {
throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, alpha);
}
if (beta <= 0) {
throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, beta);
}
return new BetaDistribution(alpha, beta);
}
/**
* Gets the first shape parameter of this distribution.
*
* @return the first shape parameter.
*/
public double getAlpha() {
return alpha;
}
/**
* Gets the second shape parameter of this distribution.
*
* @return the second shape parameter.
*/
public double getBeta() {
return beta;
}
/** {@inheritDoc}
*
*
The density is not defined when {@code x = 0, alpha < 1}, or {@code x = 1, beta < 1}.
* In this case the limit of infinity is returned.
*/
@Override
public double density(double x) {
if (x < 0 || x > 1) {
return 0;
}
return RegularizedBeta.derivative(x, alpha, beta);
}
/** {@inheritDoc}
*
*
The density is not defined when {@code x = 0, alpha < 1}, or {@code x = 1, beta < 1}.
* In this case the limit of infinity is returned.
*/
@Override
public double logDensity(double x) {
if (x < 0 || x > 1) {
return Double.NEGATIVE_INFINITY;
} else if (x == 0) {
if (alpha < 1) {
// Distribution is not valid when x=0, alpha<1
// due to a divide by zero error.
// Do not raise an exception and return the limit.
return Double.POSITIVE_INFINITY;
}
// Special case of cancellation: x^(a-1) (1-x)^(b-1) / B(a, b) = 1 / B(a, b)
if (alpha == 1) {
return -logBeta;
}
return Double.NEGATIVE_INFINITY;
} else if (x == 1) {
if (beta < 1) {
// Distribution is not valid when x=1, beta<1
// due to a divide by zero error.
// Do not raise an exception and return the limit.
return Double.POSITIVE_INFINITY;
}
// Special case of cancellation: x^(a-1) (1-x)^(b-1) / B(a, b) = 1 / B(a, b)
if (beta == 1) {
return -logBeta;
}
return Double.NEGATIVE_INFINITY;
}
// Log computation
final double logX = Math.log(x);
final double log1mX = Math.log1p(-x);
return (alpha - 1) * logX + (beta - 1) * log1mX - logBeta;
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(double x) {
if (x <= 0) {
return 0;
} else if (x >= 1) {
return 1;
} else {
return RegularizedBeta.value(x, alpha, beta);
}
}
/** {@inheritDoc} */
@Override
public double survivalProbability(double x) {
if (x <= 0) {
return 1;
} else if (x >= 1) {
return 0;
} else {
return RegularizedBeta.complement(x, alpha, beta);
}
}
/**
* {@inheritDoc}
*
*
For first shape parameter \( \alpha \) and second shape parameter
* \( \beta \), the mean is:
*
*
\[ \frac{\alpha}{\alpha + \beta} \]
*/
@Override
public double getMean() {
return mean;
}
/**
* {@inheritDoc}
*
*
For first shape parameter \( \alpha \) and second shape parameter
* \( \beta \), the variance is:
*
*
\[ \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)} \].
*/
@Override
public double getVariance() {
return variance;
}
/**
* {@inheritDoc}
*
*
The lower bound of the support is always 0.
*
* @return 0.
*/
@Override
public double getSupportLowerBound() {
return 0;
}
/**
* {@inheritDoc}
*
*
The upper bound of the support is always 1.
*
* @return 1.
*/
@Override
public double getSupportUpperBound() {
return 1;
}
/** {@inheritDoc} */
@Override
public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
// Beta distribution sampler.
return ChengBetaSampler.of(rng, alpha, beta)::sample;
}
}