All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.GammaDistribution Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.distribution;

import org.apache.commons.numbers.gamma.LogGamma;
import org.apache.commons.numbers.gamma.RegularizedGamma;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.AhrensDieterMarsagliaTsangGammaSampler;

/**
 * Implementation of the gamma distribution.
 *
 * 

The probability density function of \( X \) is: * *

\[ f(x;k,\theta) = \frac{x^{k-1}e^{-x/\theta}}{\theta^k\Gamma(k)} \] * *

for \( k > 0 \) the shape, \( \theta > 0 \) the scale, \( \Gamma(k) \) is the gamma function * and \( x \in (0, \infty) \). * * @see Gamma distribution (Wikipedia) * @see Gamma distribution (MathWorld) */ public final class GammaDistribution extends AbstractContinuousDistribution { /** Support lower bound. */ private static final double SUPPORT_LO = 0; /** Support upper bound. */ private static final double SUPPORT_HI = Double.POSITIVE_INFINITY; /** The shape parameter. */ private final double shape; /** The scale parameter. */ private final double scale; /** Precomputed term for the log density: {@code -log(gamma(shape)) - log(scale)}. */ private final double minusLogGammaShapeMinusLogScale; /** Cached value for inverse probability function. */ private final double mean; /** Cached value for inverse probability function. */ private final double variance; /** * @param shape Shape parameter. * @param scale Scale parameter. */ private GammaDistribution(double shape, double scale) { this.shape = shape; this.scale = scale; this.minusLogGammaShapeMinusLogScale = -LogGamma.value(shape) - Math.log(scale); mean = shape * scale; variance = shape * scale * scale; } /** * Creates a gamma distribution. * * @param shape Shape parameter. * @param scale Scale parameter. * @return the distribution * @throws IllegalArgumentException if {@code shape <= 0} or {@code scale <= 0}. */ public static GammaDistribution of(double shape, double scale) { if (shape <= 0) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, shape); } if (scale <= 0) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, scale); } return new GammaDistribution(shape, scale); } /** * Gets the shape parameter of this distribution. * * @return the shape parameter. */ public double getShape() { return shape; } /** * Gets the scale parameter of this distribution. * * @return the scale parameter. */ public double getScale() { return scale; } /** {@inheritDoc} * *

Returns the limit when {@code x = 0}: *

    *
  • {@code shape < 1}: Infinity *
  • {@code shape == 1}: 1 / scale *
  • {@code shape > 1}: 0 *
*/ @Override public double density(double x) { if (x <= SUPPORT_LO || x >= SUPPORT_HI) { // Special case x=0 if (x == SUPPORT_LO && shape <= 1) { return shape == 1 ? 1 / scale : Double.POSITIVE_INFINITY; } return 0; } return RegularizedGamma.P.derivative(shape, x / scale) / scale; } /** {@inheritDoc} * *

Returns the limit when {@code x = 0}: *

    *
  • {@code shape < 1}: Infinity *
  • {@code shape == 1}: -log(scale) *
  • {@code shape > 1}: -Infinity *
*/ @Override public double logDensity(double x) { if (x <= SUPPORT_LO || x >= SUPPORT_HI) { // Special case x=0 if (x == SUPPORT_LO && shape <= 1) { return shape == 1 ? -Math.log(scale) : Double.POSITIVE_INFINITY; } return Double.NEGATIVE_INFINITY; } final double y = x / scale; // More accurate to log the density when it is finite. // See NUMBERS-174: 'Log of the Gamma P Derivative' final double p = RegularizedGamma.P.derivative(shape, y) / scale; if (p <= Double.MAX_VALUE && p >= Double.MIN_NORMAL) { return Math.log(p); } // Use the log computation return minusLogGammaShapeMinusLogScale - y + Math.log(y) * (shape - 1); } /** {@inheritDoc} */ @Override public double cumulativeProbability(double x) { if (x <= SUPPORT_LO) { return 0; } else if (x >= SUPPORT_HI) { return 1; } return RegularizedGamma.P.value(shape, x / scale); } /** {@inheritDoc} */ @Override public double survivalProbability(double x) { if (x <= SUPPORT_LO) { return 1; } else if (x >= SUPPORT_HI) { return 0; } return RegularizedGamma.Q.value(shape, x / scale); } /** * {@inheritDoc} * *

For shape parameter \( k \) and scale parameter \( \theta \), the * mean is \( k \theta \). */ @Override public double getMean() { return mean; } /** * {@inheritDoc} * *

For shape parameter \( k \) and scale parameter \( \theta \), the * variance is \( k \theta^2 \). */ @Override public double getVariance() { return variance; } /** * {@inheritDoc} * *

The lower bound of the support is always 0. * * @return 0. */ @Override public double getSupportLowerBound() { return SUPPORT_LO; } /** * {@inheritDoc} * *

The upper bound of the support is always positive infinity. * * @return {@link Double#POSITIVE_INFINITY positive infinity}. */ @Override public double getSupportUpperBound() { return SUPPORT_HI; } /** {@inheritDoc} */ @Override public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) { // Gamma distribution sampler. return AhrensDieterMarsagliaTsangGammaSampler.of(rng, shape, scale)::sample; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy