All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.LaplaceDistribution Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.distribution;

/**
 * Implementation of the Laplace distribution.
 *
 * 

The probability density function of \( X \) is: * *

\[ f(x; \mu, b) = \frac{1}{2b} \exp \left( -\frac{|x-\mu|}{b} \right) \] * *

for \( \mu \) the location, * \( b > 0 \) the scale, and * \( x \in (-\infty, \infty) \). * * @see Laplace distribution (Wikipedia) * @see Laplace distribution (MathWorld) */ public final class LaplaceDistribution extends AbstractContinuousDistribution { /** The location parameter. */ private final double mu; /** The scale parameter. */ private final double beta; /** log(2 * beta). */ private final double log2beta; /** * @param mu Location parameter. * @param beta Scale parameter (must be positive). */ private LaplaceDistribution(double mu, double beta) { this.mu = mu; this.beta = beta; log2beta = Math.log(2.0 * beta); } /** * Creates a Laplace distribution. * * @param mu Location parameter. * @param beta Scale parameter (must be positive). * @return the distribution * @throws IllegalArgumentException if {@code beta <= 0} */ public static LaplaceDistribution of(double mu, double beta) { if (beta <= 0) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, beta); } return new LaplaceDistribution(mu, beta); } /** * Gets the location parameter of this distribution. * * @return the location parameter. */ public double getLocation() { return mu; } /** * Gets the scale parameter of this distribution. * * @return the scale parameter. */ public double getScale() { return beta; } /** {@inheritDoc} */ @Override public double density(double x) { return Math.exp(-Math.abs(x - mu) / beta) / (2.0 * beta); } /** {@inheritDoc} */ @Override public double logDensity(double x) { return -Math.abs(x - mu) / beta - log2beta; } /** {@inheritDoc} */ @Override public double cumulativeProbability(double x) { if (x <= mu) { return 0.5 * Math.exp((x - mu) / beta); } return 1.0 - 0.5 * Math.exp((mu - x) / beta); } /** {@inheritDoc} */ @Override public double survivalProbability(double x) { if (x <= mu) { return 1.0 - 0.5 * Math.exp((x - mu) / beta); } return 0.5 * Math.exp((mu - x) / beta); } /** {@inheritDoc} */ @Override public double inverseCumulativeProbability(double p) { ArgumentUtils.checkProbability(p); if (p == 0) { return Double.NEGATIVE_INFINITY; } else if (p == 1) { return Double.POSITIVE_INFINITY; } final double x = (p > 0.5) ? -Math.log(2.0 * (1.0 - p)) : Math.log(2.0 * p); return mu + beta * x; } /** {@inheritDoc} */ @Override public double inverseSurvivalProbability(double p) { ArgumentUtils.checkProbability(p); if (p == 1) { return Double.NEGATIVE_INFINITY; } else if (p == 0) { return Double.POSITIVE_INFINITY; } // By symmetry: x = -icdf(p); then transform back by the scale and location final double x = (p > 0.5) ? Math.log(2.0 * (1.0 - p)) : -Math.log(2.0 * p); return mu + beta * x; } /** * {@inheritDoc} * *

The mean is equal to the {@link #getLocation() location}. */ @Override public double getMean() { return getLocation(); } /** * {@inheritDoc} * *

For scale parameter \( b \), the variance is \( 2 b^2 \). */ @Override public double getVariance() { return 2.0 * beta * beta; } /** * {@inheritDoc} * *

The lower bound of the support is always negative infinity. * * @return {@link Double#NEGATIVE_INFINITY negative infinity}. */ @Override public double getSupportLowerBound() { return Double.NEGATIVE_INFINITY; } /** * {@inheritDoc} * *

The upper bound of the support is always positive infinity. * * @return {@link Double#POSITIVE_INFINITY positive infinity}. */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ @Override double getMedian() { // Overridden for the probability(double, double) method. // This is intentionally not a public method. return mu; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy