org.apache.commons.statistics.distribution.UniformContinuousDistribution Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.ContinuousUniformSampler;
/**
* Implementation of the uniform distribution.
*
* The probability density function of \( X \) is:
*
*
\[ f(x; a, b) = \frac{1}{b-a} \]
*
*
for \( -\infty \lt a \lt b \lt \infty \) and
* \( x \in [a, b] \).
*
* @see
* Uniform distribution (Wikipedia)
* @see
* Uniform distribution (MathWorld)
*/
public final class UniformContinuousDistribution extends AbstractContinuousDistribution {
/** Lower bound of this distribution (inclusive). */
private final double lower;
/** Upper bound of this distribution (exclusive). */
private final double upper;
/** Range between the upper and lower bound of this distribution (cached for computations). */
private final double upperMinusLower;
/** Cache of the density. */
private final double pdf;
/** Cache of the log density. */
private final double logPdf;
/**
* @param lower Lower bound of this distribution (inclusive).
* @param upper Upper bound of this distribution (inclusive).
*/
private UniformContinuousDistribution(double lower,
double upper) {
this.lower = lower;
this.upper = upper;
upperMinusLower = upper - lower;
pdf = 1.0 / upperMinusLower;
logPdf = -Math.log(upperMinusLower);
}
/**
* Creates a uniform continuous distribution.
*
* @param lower Lower bound of this distribution (inclusive).
* @param upper Upper bound of this distribution (inclusive).
* @return the distribution
* @throws IllegalArgumentException if {@code lower >= upper} or the range between the bounds
* is not finite
*/
public static UniformContinuousDistribution of(double lower,
double upper) {
if (lower >= upper) {
throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GTE_HIGH,
lower, upper);
}
if (!Double.isFinite(upper - lower)) {
throw new DistributionException("Range %s is not finite", upper - lower);
}
return new UniformContinuousDistribution(lower, upper);
}
/** {@inheritDoc} */
@Override
public double density(double x) {
if (x < lower ||
x > upper) {
return 0;
}
return pdf;
}
/** {@inheritDoc} */
@Override
public double probability(double x0,
double x1) {
if (x0 > x1) {
throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GT_HIGH, x0, x1);
}
if (x0 >= upper || x1 <= lower) {
// (x0, x1] does not overlap [lower, upper]
return 0;
}
// x0 < upper
// x1 >= lower
// Find the range between x0 and x1 that is within [lower, upper].
final double l = Math.max(lower, x0);
final double u = Math.min(upper, x1);
return (u - l) / upperMinusLower;
}
/** {@inheritDoc} */
@Override
public double logDensity(double x) {
if (x < lower ||
x > upper) {
return Double.NEGATIVE_INFINITY;
}
return logPdf;
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(double x) {
if (x <= lower) {
return 0;
}
if (x >= upper) {
return 1;
}
return (x - lower) / upperMinusLower;
}
/** {@inheritDoc} */
@Override
public double survivalProbability(double x) {
if (x <= lower) {
return 1;
}
if (x >= upper) {
return 0;
}
return (upper - x) / upperMinusLower;
}
/** {@inheritDoc} */
@Override
public double inverseCumulativeProbability(double p) {
ArgumentUtils.checkProbability(p);
// Avoid floating-point error for lower + p * (upper - lower) when p == 1.
return p == 1 ? upper : p * upperMinusLower + lower;
}
/** {@inheritDoc} */
@Override
public double inverseSurvivalProbability(double p) {
ArgumentUtils.checkProbability(p);
// Avoid floating-point error for upper - p * (upper - lower) when p == 1.
return p == 1 ? lower : upper - p * upperMinusLower;
}
/**
* {@inheritDoc}
*
*
For lower bound \( a \) and upper bound \( b \), the mean is \( \frac{1}{2} (a + b) \).
*/
@Override
public double getMean() {
// Avoid overflow
return 0.5 * lower + 0.5 * upper;
}
/**
* {@inheritDoc}
*
*
For lower bound \( a \) and upper bound \( b \), the variance is \( \frac{1}{12} (b - a)^2 \).
*/
@Override
public double getVariance() {
return upperMinusLower * upperMinusLower / 12;
}
/**
* {@inheritDoc}
*
*
The lower bound of the support is equal to the lower bound parameter
* of the distribution.
*/
@Override
public double getSupportLowerBound() {
return lower;
}
/**
* {@inheritDoc}
*
*
The upper bound of the support is equal to the upper bound parameter
* of the distribution.
*/
@Override
public double getSupportUpperBound() {
return upper;
}
/** {@inheritDoc} */
@Override
public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
// Uniform distribution sampler.
return ContinuousUniformSampler.of(rng, lower, upper)::sample;
}
}