All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.BetaDistribution Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.distribution;

import org.apache.commons.numbers.gamma.LogBeta;
import org.apache.commons.numbers.gamma.RegularizedBeta;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.ChengBetaSampler;

/**
 * Implementation of the beta distribution.
 *
 * 

The probability density function of \( X \) is: * *

\[ f(x; \alpha, \beta) = \frac{1}{ B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1} \] * *

for \( \alpha > 0 \), * \( \beta > 0 \), \( x \in [0, 1] \), and * the beta function, \( B \), is a normalization constant: * *

\[ B(\alpha, \beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \] * *

where \( \Gamma \) is the gamma function. * *

\( \alpha \) and \( \beta \) are shape parameters. * * @see Beta distribution (Wikipedia) * @see Beta distribution (MathWorld) */ public final class BetaDistribution extends AbstractContinuousDistribution { /** First shape parameter. */ private final double alpha; /** Second shape parameter. */ private final double beta; /** Normalizing factor used in log density computations. log(beta(a, b)). */ private final double logBeta; /** Cached value for inverse probability function. */ private final double mean; /** Cached value for inverse probability function. */ private final double variance; /** * @param alpha First shape parameter (must be positive). * @param beta Second shape parameter (must be positive). */ private BetaDistribution(double alpha, double beta) { this.alpha = alpha; this.beta = beta; logBeta = LogBeta.value(alpha, beta); final double alphabetasum = alpha + beta; mean = alpha / alphabetasum; variance = (alpha * beta) / ((alphabetasum * alphabetasum) * (alphabetasum + 1)); } /** * Creates a beta distribution. * * @param alpha First shape parameter (must be positive). * @param beta Second shape parameter (must be positive). * @return the distribution * @throws IllegalArgumentException if {@code alpha <= 0} or {@code beta <= 0}. */ public static BetaDistribution of(double alpha, double beta) { if (alpha <= 0) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, alpha); } if (beta <= 0) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, beta); } return new BetaDistribution(alpha, beta); } /** * Gets the first shape parameter of this distribution. * * @return the first shape parameter. */ public double getAlpha() { return alpha; } /** * Gets the second shape parameter of this distribution. * * @return the second shape parameter. */ public double getBeta() { return beta; } /** {@inheritDoc} * *

The density is not defined when {@code x = 0, alpha < 1}, or {@code x = 1, beta < 1}. * In this case the limit of infinity is returned. */ @Override public double density(double x) { if (x < 0 || x > 1) { return 0; } return RegularizedBeta.derivative(x, alpha, beta); } /** {@inheritDoc} * *

The density is not defined when {@code x = 0, alpha < 1}, or {@code x = 1, beta < 1}. * In this case the limit of infinity is returned. */ @Override public double logDensity(double x) { if (x < 0 || x > 1) { return Double.NEGATIVE_INFINITY; } else if (x == 0) { if (alpha < 1) { // Distribution is not valid when x=0, alpha<1 // due to a divide by zero error. // Do not raise an exception and return the limit. return Double.POSITIVE_INFINITY; } // Special case of cancellation: x^(a-1) (1-x)^(b-1) / B(a, b) = 1 / B(a, b) if (alpha == 1) { return -logBeta; } return Double.NEGATIVE_INFINITY; } else if (x == 1) { if (beta < 1) { // Distribution is not valid when x=1, beta<1 // due to a divide by zero error. // Do not raise an exception and return the limit. return Double.POSITIVE_INFINITY; } // Special case of cancellation: x^(a-1) (1-x)^(b-1) / B(a, b) = 1 / B(a, b) if (beta == 1) { return -logBeta; } return Double.NEGATIVE_INFINITY; } // Log computation final double logX = Math.log(x); final double log1mX = Math.log1p(-x); return (alpha - 1) * logX + (beta - 1) * log1mX - logBeta; } /** {@inheritDoc} */ @Override public double cumulativeProbability(double x) { if (x <= 0) { return 0; } else if (x >= 1) { return 1; } else { return RegularizedBeta.value(x, alpha, beta); } } /** {@inheritDoc} */ @Override public double survivalProbability(double x) { if (x <= 0) { return 1; } else if (x >= 1) { return 0; } else { return RegularizedBeta.complement(x, alpha, beta); } } /** * {@inheritDoc} * *

For first shape parameter \( \alpha \) and second shape parameter * \( \beta \), the mean is: * *

\[ \frac{\alpha}{\alpha + \beta} \] */ @Override public double getMean() { return mean; } /** * {@inheritDoc} * *

For first shape parameter \( \alpha \) and second shape parameter * \( \beta \), the variance is: * *

\[ \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)} \] */ @Override public double getVariance() { return variance; } /** * {@inheritDoc} * *

The lower bound of the support is always 0. * * @return 0. */ @Override public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * *

The upper bound of the support is always 1. * * @return 1. */ @Override public double getSupportUpperBound() { return 1; } /** {@inheritDoc} */ @Override public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) { // Beta distribution sampler. return ChengBetaSampler.of(rng, alpha, beta)::sample; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy