org.apache.commons.statistics.distribution.BinomialDistribution Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.numbers.gamma.RegularizedBeta;
/**
* Implementation of the binomial distribution.
*
* The probability mass function of \( X \) is:
*
*
\[ f(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k} \]
*
*
for \( n \in \{0, 1, 2, \dots\} \) the number of trials,
* \( p \in [0, 1] \) the probability of success,
* \( k \in \{0, 1, \dots, n\} \) the number of successes, and
*
*
\[ \binom{n}{k} = \frac{n!}{k! \, (n-k)!} \]
*
*
is the binomial coefficient.
*
* @see Binomial distribution (Wikipedia)
* @see Binomial distribution (MathWorld)
*/
public final class BinomialDistribution extends AbstractDiscreteDistribution {
/** 1/2. */
private static final float HALF = 0.5f;
/** The number of trials. */
private final int numberOfTrials;
/** The probability of success. */
private final double probabilityOfSuccess;
/** Cached value for pmf(x=0). */
private final double pmf0;
/** Cached value for pmf(x=n). */
private final double pmfn;
/**
* @param trials Number of trials.
* @param p Probability of success.
*/
private BinomialDistribution(int trials,
double p) {
probabilityOfSuccess = p;
numberOfTrials = trials;
// Special pmf cases where the power function is more accurate:
// (n choose k) == 1 for k=0, k=n
// pmf = p^k (1-p)^(n-k)
// Note: This handles the edge case of n=0: pmf(k=0) = 1, else 0
if (probabilityOfSuccess >= HALF) {
pmf0 = Math.pow(1 - probabilityOfSuccess, numberOfTrials);
} else {
pmf0 = Math.exp(numberOfTrials * Math.log1p(-probabilityOfSuccess));
}
pmfn = Math.pow(probabilityOfSuccess, numberOfTrials);
}
/**
* Creates a binomial distribution.
*
* @param trials Number of trials.
* @param p Probability of success.
* @return the distribution
* @throws IllegalArgumentException if {@code trials < 0}, or if {@code p < 0}
* or {@code p > 1}.
*/
public static BinomialDistribution of(int trials,
double p) {
if (trials < 0) {
throw new DistributionException(DistributionException.NEGATIVE,
trials);
}
ArgumentUtils.checkProbability(p);
// Avoid p = -0.0 to avoid returning -0.0 for some probability computations.
return new BinomialDistribution(trials, Math.abs(p));
}
/**
* Gets the number of trials parameter of this distribution.
*
* @return the number of trials.
*/
public int getNumberOfTrials() {
return numberOfTrials;
}
/**
* Gets the probability of success parameter of this distribution.
*
* @return the probability of success.
*/
public double getProbabilityOfSuccess() {
return probabilityOfSuccess;
}
/** {@inheritDoc} */
@Override
public double probability(int x) {
if (x < 0 || x > numberOfTrials) {
return 0;
} else if (x == 0) {
return pmf0;
} else if (x == numberOfTrials) {
return pmfn;
}
return Math.exp(SaddlePointExpansionUtils.logBinomialProbability(x,
numberOfTrials, probabilityOfSuccess,
1.0 - probabilityOfSuccess));
}
/** {@inheritDoc} **/
@Override
public double logProbability(int x) {
if (numberOfTrials == 0) {
return (x == 0) ? 0.0 : Double.NEGATIVE_INFINITY;
} else if (x < 0 || x > numberOfTrials) {
return Double.NEGATIVE_INFINITY;
}
// Special cases for x=0, x=n
// are handled in the saddle point expansion
return SaddlePointExpansionUtils.logBinomialProbability(x,
numberOfTrials, probabilityOfSuccess,
1.0 - probabilityOfSuccess);
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(int x) {
if (x < 0) {
return 0.0;
} else if (x >= numberOfTrials) {
return 1.0;
} else if (x == 0) {
return pmf0;
}
return RegularizedBeta.complement(probabilityOfSuccess,
x + 1.0, (double) numberOfTrials - x);
}
/** {@inheritDoc} */
@Override
public double survivalProbability(int x) {
if (x < 0) {
return 1.0;
} else if (x >= numberOfTrials) {
return 0.0;
} else if (x == numberOfTrials - 1) {
return pmfn;
}
return RegularizedBeta.value(probabilityOfSuccess,
x + 1.0, (double) numberOfTrials - x);
}
/**
* {@inheritDoc}
*
*
For number of trials \( n \) and probability of success \( p \), the mean is \( np \).
*/
@Override
public double getMean() {
return numberOfTrials * probabilityOfSuccess;
}
/**
* {@inheritDoc}
*
*
For number of trials \( n \) and probability of success \( p \), the variance is \( np (1 - p) \).
*/
@Override
public double getVariance() {
final double p = probabilityOfSuccess;
return numberOfTrials * p * (1 - p);
}
/**
* {@inheritDoc}
*
*
The lower bound of the support is always 0 except for the probability
* parameter {@code p = 1}.
*
* @return 0 or the number of trials.
*/
@Override
public int getSupportLowerBound() {
return probabilityOfSuccess < 1.0 ? 0 : numberOfTrials;
}
/**
* {@inheritDoc}
*
*
The upper bound of the support is the number of trials except for the
* probability parameter {@code p = 0}.
*
* @return number of trials or 0.
*/
@Override
public int getSupportUpperBound() {
return probabilityOfSuccess > 0.0 ? numberOfTrials : 0;
}
/** {@inheritDoc} */
@Override
int getMedian() {
// Overridden for the probability(int, int) method.
// This is intentionally not a public method.
// Can be floor or ceiling of np. For the probability in a range use the floor
// as this only used for values >= median+1.
return (int) (numberOfTrials * probabilityOfSuccess);
}
}