org.apache.commons.statistics.distribution.ChiSquaredDistribution Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Implementation of the chi-squared distribution.
*
* The probability density function of \( X \) is:
*
*
\[ f(x; k) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2 -1} e^{-x/2} \]
*
*
for \( k > 0 \) the degrees of freedom,
* \( \Gamma(k/2) \) is the gamma function, and
* \( x \in [0, \infty) \).
*
* @see Chi-squared distribution (Wikipedia)
* @see Chi-squared distribution (MathWorld)
*/
public final class ChiSquaredDistribution extends AbstractContinuousDistribution {
/** Internal Gamma distribution. */
private final GammaDistribution gamma;
/**
* @param degreesOfFreedom Degrees of freedom.
*/
private ChiSquaredDistribution(double degreesOfFreedom) {
gamma = GammaDistribution.of(degreesOfFreedom / 2, 2);
}
/**
* Creates a chi-squared distribution.
*
* @param degreesOfFreedom Degrees of freedom.
* @return the distribution
* @throws IllegalArgumentException if {@code degreesOfFreedom <= 0}.
*/
public static ChiSquaredDistribution of(double degreesOfFreedom) {
return new ChiSquaredDistribution(degreesOfFreedom);
}
/**
* Gets the degrees of freedom parameter of this distribution.
*
* @return the degrees of freedom.
*/
public double getDegreesOfFreedom() {
return gamma.getShape() * 2;
}
/** {@inheritDoc}
*
*
Returns the limit when {@code x = 0}:
*
* - {@code df < 2}: Infinity
*
- {@code df == 2}: 1 / 2
*
- {@code df > 2}: 0
*
*/
@Override
public double density(double x) {
return gamma.density(x);
}
/** {@inheritDoc}
*
* Returns the limit when {@code x = 0}:
*
* - {@code df < 2}: Infinity
*
- {@code df == 2}: log(1 / 2)
*
- {@code df > 2}: -Infinity
*
*/
@Override
public double logDensity(double x) {
return gamma.logDensity(x);
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(double x) {
return gamma.cumulativeProbability(x);
}
/** {@inheritDoc} */
@Override
public double survivalProbability(double x) {
return gamma.survivalProbability(x);
}
/** {@inheritDoc} */
@Override
public double inverseCumulativeProbability(double p) {
return gamma.inverseCumulativeProbability(p);
}
/** {@inheritDoc} */
@Override
public double inverseSurvivalProbability(double p) {
return gamma.inverseSurvivalProbability(p);
}
/**
* {@inheritDoc}
*
* For \( k \) degrees of freedom, the mean is \( k \).
*/
@Override
public double getMean() {
return getDegreesOfFreedom();
}
/**
* {@inheritDoc}
*
*
For \( k \) degrees of freedom, the variance is \( 2k \).
*/
@Override
public double getVariance() {
return 2 * getDegreesOfFreedom();
}
/**
* {@inheritDoc}
*
*
The lower bound of the support is always 0.
*
* @return 0.
*/
@Override
public double getSupportLowerBound() {
return 0;
}
/**
* {@inheritDoc}
*
*
The upper bound of the support is always positive infinity.
*
* @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
*/
@Override
public double getSupportUpperBound() {
return Double.POSITIVE_INFINITY;
}
/** {@inheritDoc} */
@Override
public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
return gamma.createSampler(rng);
}
}