All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.GumbelDistribution Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.distribution;

/**
 * Implementation of the Gumbel distribution.
 *
 * 

The probability density function of \( X \) is: * *

\[ f(x; \mu, \beta) = \frac{1}{\beta} e^{-(z+e^{-z})} \] * *

where \[ z = \frac{x - \mu}{\beta} \] * *

for \( \mu \) the location, * \( \beta > 0 \) the scale, and * \( x \in (-\infty, \infty) \). * * @see Gumbel distribution (Wikipedia) * @see Gumbel distribution (MathWorld) */ public final class GumbelDistribution extends AbstractContinuousDistribution { /** Support lower bound. */ private static final double SUPPORT_LO = Double.NEGATIVE_INFINITY; /** Support upper bound. */ private static final double SUPPORT_HI = Double.POSITIVE_INFINITY; /** π2/6. https://oeis.org/A013661. */ private static final double PI_SQUARED_OVER_SIX = 1.644934066848226436472415166646; /** * * Approximation of Euler's constant. * https://oeis.org/A001620. */ private static final double EULER = 0.5772156649015328606065; /** ln(ln(2)). https://oeis.org/A074785. */ private static final double LN_LN_2 = -0.3665129205816643270124; /** Location parameter. */ private final double mu; /** Scale parameter. */ private final double beta; /** * @param mu Location parameter. * @param beta Scale parameter (must be positive). */ private GumbelDistribution(double mu, double beta) { this.beta = beta; this.mu = mu; } /** * Creates a Gumbel distribution. * * @param mu Location parameter. * @param beta Scale parameter (must be positive). * @return the distribution * @throws IllegalArgumentException if {@code beta <= 0} */ public static GumbelDistribution of(double mu, double beta) { if (beta <= 0) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, beta); } return new GumbelDistribution(mu, beta); } /** * Gets the location parameter of this distribution. * * @return the location parameter. */ public double getLocation() { return mu; } /** * Gets the scale parameter of this distribution. * * @return the scale parameter. */ public double getScale() { return beta; } /** {@inheritDoc} */ @Override public double density(double x) { if (x <= SUPPORT_LO) { return 0; } final double z = (x - mu) / beta; final double t = Math.exp(-z); return Math.exp(-z - t) / beta; } /** {@inheritDoc} */ @Override public double logDensity(double x) { if (x <= SUPPORT_LO) { return Double.NEGATIVE_INFINITY; } final double z = (x - mu) / beta; final double t = Math.exp(-z); return -z - t - Math.log(beta); } /** {@inheritDoc} */ @Override public double cumulativeProbability(double x) { final double z = (x - mu) / beta; return Math.exp(-Math.exp(-z)); } /** {@inheritDoc} */ @Override public double survivalProbability(double x) { final double z = (x - mu) / beta; return -Math.expm1(-Math.exp(-z)); } /** {@inheritDoc} */ @Override public double inverseCumulativeProbability(double p) { ArgumentUtils.checkProbability(p); if (p == 0) { return Double.NEGATIVE_INFINITY; } else if (p == 1) { return Double.POSITIVE_INFINITY; } return mu - Math.log(-Math.log(p)) * beta; } /** {@inheritDoc} */ @Override public double inverseSurvivalProbability(double p) { ArgumentUtils.checkProbability(p); if (p == 1) { return Double.NEGATIVE_INFINITY; } else if (p == 0) { return Double.POSITIVE_INFINITY; } return mu - Math.log(-Math.log1p(-p)) * beta; } /** * {@inheritDoc} * *

For location parameter \( \mu \) and scale parameter \( \beta \), the mean is: * *

\[ \mu + \beta \gamma \] * *

where \( \gamma \) is the * * Euler-Mascheroni constant. */ @Override public double getMean() { return mu + EULER * beta; } /** * {@inheritDoc} * *

For scale parameter \( \beta \), the variance is: * *

\[ \frac{\pi^2}{6} \beta^2 \] */ @Override public double getVariance() { return PI_SQUARED_OVER_SIX * beta * beta; } /** * {@inheritDoc} * *

The lower bound of the support is always negative infinity. * * @return {@linkplain Double#NEGATIVE_INFINITY negative infinity}. */ @Override public double getSupportLowerBound() { return SUPPORT_LO; } /** * {@inheritDoc} * *

The upper bound of the support is always positive infinity. * * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}. */ @Override public double getSupportUpperBound() { return SUPPORT_HI; } /** {@inheritDoc} */ @Override double getMedian() { // Overridden for the probability(double, double) method. // This is intentionally not a public method. // u - beta * ln(ln(2)) return mu - beta * LN_LN_2; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy