All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.LogisticDistribution Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.statistics.distribution;

/**
 * Implementation of the logistic distribution.
 *
 * 

The probability density function of \( X \) is: * *

\[ f(x; \mu, s) = \frac{e^{-(x-\mu)/s}} {s\left(1+e^{-(x-\mu)/s}\right)^2} \] * *

for \( \mu \) the location, * \( s > 0 \) the scale, and * \( x \in (-\infty, \infty) \). * * @see Logistic distribution (Wikipedia) * @see Logistic distribution (MathWorld) */ public final class LogisticDistribution extends AbstractContinuousDistribution { /** Support lower bound. */ private static final double SUPPORT_LO = Double.NEGATIVE_INFINITY; /** Support upper bound. */ private static final double SUPPORT_HI = Double.POSITIVE_INFINITY; /** π2/3. https://oeis.org/A195055. */ private static final double PI_SQUARED_OVER_THREE = 3.289868133696452872944830; /** Location parameter. */ private final double mu; /** Scale parameter. */ private final double scale; /** Logarithm of "scale". */ private final double logScale; /** * @param mu Location parameter. * @param scale Scale parameter (must be positive). */ private LogisticDistribution(double mu, double scale) { this.mu = mu; this.scale = scale; this.logScale = Math.log(scale); } /** * Creates a logistic distribution. * * @param mu Location parameter. * @param scale Scale parameter (must be positive). * @return the distribution * @throws IllegalArgumentException if {@code scale <= 0}. */ public static LogisticDistribution of(double mu, double scale) { if (scale <= 0) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, scale); } return new LogisticDistribution(mu, scale); } /** * Gets the location parameter of this distribution. * * @return the location parameter. */ public double getLocation() { return mu; } /** * Gets the scale parameter of this distribution. * * @return the scale parameter. */ public double getScale() { return scale; } /** {@inheritDoc} */ @Override public double density(double x) { if (x <= SUPPORT_LO || x >= SUPPORT_HI) { return 0; } // Ensure symmetry around location by using the absolute. // This also ensures exp(z) is between 1 and 0 and avoids // overflow for large negative values of (x - mu). // Exploits the reciprocal relation: exp(-x) == 1 / exp(x) // exp(-z) 1 exp(z) exp(z) // --------------- = -------------------------- * ------ = -------------- // (1 + exp(-z))^2 exp(z) (1 + 1 / exp(z))^2 exp(z) (1 + exp(z))^2 final double z = -Math.abs(x - mu) / scale; final double v = Math.exp(z); return v / ((1 + v) * (1 + v)) / scale; } /** {@inheritDoc} */ @Override public double logDensity(double x) { if (x <= SUPPORT_LO || x >= SUPPORT_HI) { return Double.NEGATIVE_INFINITY; } // Ensure symmetry around location by using the absolute final double z = -Math.abs(x - mu) / scale; final double v = Math.exp(z); return z - 2 * Math.log1p(v) - logScale; } /** {@inheritDoc} */ @Override public double cumulativeProbability(double x) { final double z = (x - mu) / scale; return 1 / (1 + Math.exp(-z)); } /** {@inheritDoc} */ @Override public double survivalProbability(double x) { final double z = (x - mu) / scale; return 1 / (1 + Math.exp(z)); } /** {@inheritDoc} */ @Override public double inverseCumulativeProbability(double p) { ArgumentUtils.checkProbability(p); if (p == 0) { return SUPPORT_LO; } else if (p == 1) { return SUPPORT_HI; } else { return scale * Math.log(p / (1 - p)) + mu; } } /** {@inheritDoc} */ @Override public double inverseSurvivalProbability(double p) { ArgumentUtils.checkProbability(p); if (p == 1) { return SUPPORT_LO; } else if (p == 0) { return SUPPORT_HI; } else { return scale * -Math.log(p / (1 - p)) + mu; } } /** * {@inheritDoc} * *

The mean is equal to the {@linkplain #getLocation() location}. */ @Override public double getMean() { return getLocation(); } /** * {@inheritDoc} * *

For scale parameter \( s \), the variance is: * *

\[ \frac{s^2 \pi^2}{3} \] */ @Override public double getVariance() { return scale * scale * PI_SQUARED_OVER_THREE; } /** * {@inheritDoc} * *

The lower bound of the support is always negative infinity. * * @return {@linkplain Double#NEGATIVE_INFINITY negative infinity}. */ @Override public double getSupportLowerBound() { return SUPPORT_LO; } /** * {@inheritDoc} * *

The upper bound of the support is always positive infinity. * * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}. */ @Override public double getSupportUpperBound() { return SUPPORT_HI; } /** {@inheritDoc} */ @Override double getMedian() { // Overridden for the probability(double, double) method. // This is intentionally not a public method. return mu; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy