org.apache.commons.statistics.distribution.NakagamiDistribution Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.numbers.gamma.Gamma;
import org.apache.commons.numbers.gamma.GammaRatio;
import org.apache.commons.numbers.gamma.LogGamma;
import org.apache.commons.numbers.gamma.RegularizedGamma;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.AhrensDieterMarsagliaTsangGammaSampler;
import org.apache.commons.rng.sampling.distribution.SharedStateContinuousSampler;
/**
* Implementation of the Nakagami distribution.
*
* The probability density function of \( X \) is:
*
*
\[ f(x; \mu, \Omega) = \frac{2\mu^\mu}{\Gamma(\mu)\Omega^\mu}x^{2\mu-1}\exp\left(-\frac{\mu}{\Omega}x^2\right) \]
*
*
for \( \mu > 0 \) the shape,
* \( \Omega > 0 \) the scale, and
* \( x \in (0, \infty) \).
*
* @see Nakagami distribution (Wikipedia)
*/
public final class NakagamiDistribution extends AbstractContinuousDistribution {
/** Support lower bound. */
private static final double SUPPORT_LO = 0;
/** Support upper bound. */
private static final double SUPPORT_HI = Double.POSITIVE_INFINITY;
/** The shape parameter. */
private final double mu;
/** The scale parameter. */
private final double omega;
/** Density prefactor. */
private final double densityPrefactor;
/** Log density prefactor. */
private final double logDensityPrefactor;
/** Cached value for inverse probability function. */
private final double mean;
/** Cached value for inverse probability function. */
private final double variance;
/**
* @param mu Shape parameter (must be positive).
* @param omega Scale parameter (must be positive). Controls the spread of the distribution.
*/
private NakagamiDistribution(double mu,
double omega) {
this.mu = mu;
this.omega = omega;
densityPrefactor = 2.0 * Math.pow(mu, mu) / (Gamma.value(mu) * Math.pow(omega, mu));
logDensityPrefactor = Constants.LN_TWO + Math.log(mu) * mu - LogGamma.value(mu) - Math.log(omega) * mu;
final double v = GammaRatio.delta(mu, 0.5);
mean = Math.sqrt(omega / mu) / v;
variance = omega - (omega / mu) / v / v;
}
/**
* Creates a Nakagami distribution.
*
* @param mu Shape parameter (must be positive).
* @param omega Scale parameter (must be positive). Controls the spread of the distribution.
* @return the distribution
* @throws IllegalArgumentException if {@code mu <= 0} or if
* {@code omega <= 0}.
*/
public static NakagamiDistribution of(double mu,
double omega) {
if (mu <= 0) {
throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, mu);
}
if (omega <= 0) {
throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, omega);
}
return new NakagamiDistribution(mu, omega);
}
/**
* Gets the shape parameter of this distribution.
*
* @return the shape parameter.
*/
public double getShape() {
return mu;
}
/**
* Gets the scale parameter of this distribution.
*
* @return the scale parameter.
*/
public double getScale() {
return omega;
}
/** {@inheritDoc} */
@Override
public double density(double x) {
if (x <= SUPPORT_LO ||
x >= SUPPORT_HI) {
return 0;
}
return densityPrefactor * Math.pow(x, 2 * mu - 1) * Math.exp(-mu * x * x / omega);
}
/** {@inheritDoc} */
@Override
public double logDensity(double x) {
if (x <= SUPPORT_LO ||
x >= SUPPORT_HI) {
return Double.NEGATIVE_INFINITY;
}
return logDensityPrefactor + Math.log(x) * (2 * mu - 1) - (mu * x * x / omega);
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(double x) {
if (x <= SUPPORT_LO) {
return 0;
} else if (x >= SUPPORT_HI) {
return 1;
}
return RegularizedGamma.P.value(mu, mu * x * x / omega);
}
/** {@inheritDoc} */
@Override
public double survivalProbability(double x) {
if (x <= SUPPORT_LO) {
return 1;
} else if (x >= SUPPORT_HI) {
return 0;
}
return RegularizedGamma.Q.value(mu, mu * x * x / omega);
}
/**
* {@inheritDoc}
*
*
For shape parameter \( \mu \) and scale parameter \( \Omega \), the mean is:
*
*
\[ \frac{\Gamma(m+\frac{1}{2})}{\Gamma(m)}\left(\frac{\Omega}{m}\right)^{1/2} \]
*/
@Override
public double getMean() {
return mean;
}
/**
* {@inheritDoc}
*
*
For shape parameter \( \mu \) and scale parameter \( \Omega \), the variance is:
*
*
\[ \Omega\left(1-\frac{1}{m}\left(\frac{\Gamma(m+\frac{1}{2})}{\Gamma(m)}\right)^2\right) \]
*/
@Override
public double getVariance() {
return variance;
}
/**
* {@inheritDoc}
*
*
The lower bound of the support is always 0.
*
* @return 0.
*/
@Override
public double getSupportLowerBound() {
return SUPPORT_LO;
}
/**
* {@inheritDoc}
*
*
The upper bound of the support is always positive infinity.
*
* @return {@linkplain Double#POSITIVE_INFINITY positive infinity}.
*/
@Override
public double getSupportUpperBound() {
return SUPPORT_HI;
}
@Override
public Sampler createSampler(UniformRandomProvider rng) {
// Generate using a related Gamma distribution
// See https://en.wikipedia.org/wiki/Nakagami_distribution#Generation
final double shape = mu;
final double scale = omega / mu;
final SharedStateContinuousSampler sampler =
AhrensDieterMarsagliaTsangGammaSampler.of(rng, shape, scale);
return () -> Math.sqrt(sampler.sample());
}
}