All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.NormalDistribution Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.statistics.distribution;

import org.apache.commons.numbers.gamma.ErfDifference;
import org.apache.commons.numbers.gamma.Erfc;
import org.apache.commons.numbers.gamma.InverseErfc;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.GaussianSampler;
import org.apache.commons.rng.sampling.distribution.ZigguratSampler;

/**
 * Implementation of the normal (Gaussian) distribution.
 *
 * 

The probability density function of \( X \) is: * *

\[ f(x; \mu, \sigma) = \frac 1 {\sigma\sqrt{2\pi}} e^{-{\frac 1 2}\left( \frac{x-\mu}{\sigma} \right)^2 } \] * *

for \( \mu \) the mean, * \( \sigma > 0 \) the standard deviation, and * \( x \in (-\infty, \infty) \). * * @see Normal distribution (Wikipedia) * @see Normal distribution (MathWorld) */ public final class NormalDistribution extends AbstractContinuousDistribution { /** Mean of this distribution. */ private final double mean; /** Standard deviation of this distribution. */ private final double standardDeviation; /** The value of {@code log(sd) + 0.5*log(2*pi)} stored for faster computation. */ private final double logStandardDeviationPlusHalfLog2Pi; /** * Standard deviation multiplied by sqrt(2). * This is used to avoid a double division when computing the value passed to the * error function: *

     *  ((x - u) / sd) / sqrt(2) == (x - u) / (sd * sqrt(2)).
     *  
*

Note: Implementations may first normalise x and then divide by sqrt(2) resulting * in differences due to rounding error that show increasingly large relative * differences as the error function computes close to 0 in the extreme tail. */ private final double sdSqrt2; /** * Standard deviation multiplied by sqrt(2 pi). Computed to high precision. */ private final double sdSqrt2pi; /** * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. */ private NormalDistribution(double mean, double sd) { this.mean = mean; standardDeviation = sd; logStandardDeviationPlusHalfLog2Pi = Math.log(sd) + Constants.HALF_LOG_TWO_PI; // Minimise rounding error by computing sqrt(2 * sd * sd) exactly. // Compute using extended precision with care to avoid over/underflow. sdSqrt2 = ExtendedPrecision.sqrt2xx(sd); // Compute sd * sqrt(2 * pi) sdSqrt2pi = ExtendedPrecision.xsqrt2pi(sd); } /** * Creates a normal distribution. * * @param mean Mean for this distribution. * @param sd Standard deviation for this distribution. * @return the distribution * @throws IllegalArgumentException if {@code sd <= 0}. */ public static NormalDistribution of(double mean, double sd) { if (sd > 0) { return new NormalDistribution(mean, sd); } // zero, negative or nan throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, sd); } /** * Gets the standard deviation parameter of this distribution. * * @return the standard deviation. */ public double getStandardDeviation() { return standardDeviation; } /** {@inheritDoc} */ @Override public double density(double x) { final double z = (x - mean) / standardDeviation; return ExtendedPrecision.expmhxx(z) / sdSqrt2pi; } /** {@inheritDoc} */ @Override public double probability(double x0, double x1) { if (x0 > x1) { throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GT_HIGH, x0, x1); } final double v0 = (x0 - mean) / sdSqrt2; final double v1 = (x1 - mean) / sdSqrt2; return 0.5 * ErfDifference.value(v0, v1); } /** {@inheritDoc} */ @Override public double logDensity(double x) { final double z = (x - mean) / standardDeviation; return -0.5 * z * z - logStandardDeviationPlusHalfLog2Pi; } /** {@inheritDoc} */ @Override public double cumulativeProbability(double x) { final double dev = x - mean; return 0.5 * Erfc.value(-dev / sdSqrt2); } /** {@inheritDoc} */ @Override public double survivalProbability(double x) { final double dev = x - mean; return 0.5 * Erfc.value(dev / sdSqrt2); } /** {@inheritDoc} */ @Override public double inverseCumulativeProbability(double p) { ArgumentUtils.checkProbability(p); return mean - sdSqrt2 * InverseErfc.value(2 * p); } /** {@inheritDoc} */ @Override public double inverseSurvivalProbability(double p) { ArgumentUtils.checkProbability(p); return mean + sdSqrt2 * InverseErfc.value(2 * p); } /** {@inheritDoc} */ @Override public double getMean() { return mean; } /** * {@inheritDoc} * *

For standard deviation parameter \( \sigma \), the variance is \( \sigma^2 \). */ @Override public double getVariance() { final double s = getStandardDeviation(); return s * s; } /** * {@inheritDoc} * *

The lower bound of the support is always negative infinity. * * @return {@linkplain Double#NEGATIVE_INFINITY negative infinity}. */ @Override public double getSupportLowerBound() { return Double.NEGATIVE_INFINITY; } /** * {@inheritDoc} * *

The upper bound of the support is always positive infinity. * * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}. */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ @Override public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) { // Gaussian distribution sampler. return GaussianSampler.of(ZigguratSampler.NormalizedGaussian.of(rng), mean, standardDeviation)::sample; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy