All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.ParetoDistribution Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.statistics.distribution;

import java.util.function.DoubleUnaryOperator;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.InverseTransformParetoSampler;

/**
 * Implementation of the Pareto (Type I) distribution.
 *
 * 

The probability density function of \( X \) is: * *

\[ f(x; k, \alpha) = \frac{\alpha k^\alpha}{x^{\alpha + 1}} \] * *

for \( k > 0 \), * \( \alpha > 0 \), and * \( x \in [k, \infty) \). * *

\( k \) is a scale parameter: this is the minimum possible value of \( X \). *
\( \alpha \) is a shape parameter: this is the Pareto index. * * @see Pareto distribution (Wikipedia) * @see Pareto distribution (MathWorld) */ public final class ParetoDistribution extends AbstractContinuousDistribution { /** The minimum value for the shape parameter when computing when computing the variance. */ private static final double MIN_SHAPE_FOR_VARIANCE = 2.0; /** The scale parameter of this distribution. Also known as {@code k}; * the minimum possible value for the random variable {@code X}. */ private final double scale; /** The shape parameter of this distribution. */ private final double shape; /** Implementation of PDF(x). Assumes that {@code x >= scale}. */ private final DoubleUnaryOperator pdf; /** Implementation of log PDF(x). Assumes that {@code x >= scale}. */ private final DoubleUnaryOperator logpdf; /** * @param scale Scale parameter (minimum possible value of X). * @param shape Shape parameter (Pareto index). */ private ParetoDistribution(double scale, double shape) { this.scale = scale; this.shape = shape; // The Pareto distribution approaches a Dirac delta function when shape -> inf. // Parameterisations can also lead to underflow in the standard computation. // Extract the PDF and CDF to specialized implementations to handle edge cases. // Pre-compute factors for the standard computation final double shapeByScalePowShape = shape * Math.pow(scale, shape); final double logShapePlusShapeByLogScale = Math.log(shape) + Math.log(scale) * shape; if (shapeByScalePowShape < Double.POSITIVE_INFINITY && shapeByScalePowShape >= Double.MIN_NORMAL) { // Standard computation pdf = x -> shapeByScalePowShape / Math.pow(x, shape + 1); logpdf = x -> logShapePlusShapeByLogScale - Math.log(x) * (shape + 1); } else { // Standard computation overflow; underflow to sub-normal or zero; or nan (pow(1.0, inf)) if (Double.isFinite(logShapePlusShapeByLogScale)) { // Log computation is valid logpdf = x -> logShapePlusShapeByLogScale - Math.log(x) * (shape + 1); pdf = x -> Math.exp(logpdf.applyAsDouble(x)); } else { // Assume Dirac function logpdf = x -> x > scale ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY; // PDF has infinite value at lower bound pdf = x -> x > scale ? 0 : Double.POSITIVE_INFINITY; } } } /** * Creates a Pareto distribution. * * @param scale Scale parameter (minimum possible value of X). * @param shape Shape parameter (Pareto index). * @return the distribution * @throws IllegalArgumentException if {@code scale <= 0}, {@code scale} is * infinite, or {@code shape <= 0}. */ public static ParetoDistribution of(double scale, double shape) { if (scale <= 0 || scale == Double.POSITIVE_INFINITY) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE_FINITE, scale); } if (shape <= 0) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, shape); } return new ParetoDistribution(scale, shape); } /** * Gets the scale parameter of this distribution. * This is the minimum possible value of X. * * @return the scale parameter. */ public double getScale() { return scale; } /** * Gets the shape parameter of this distribution. * This is the Pareto index. * * @return the shape parameter. */ public double getShape() { return shape; } /** * {@inheritDoc} * *

For scale parameter \( k \) and shape parameter \( \alpha \), the PDF is: * *

\[ f(x; k, \alpha) = \begin{cases} * 0 & \text{for } x \lt k \\ * \frac{\alpha k^\alpha}{x^{\alpha + 1}} & \text{for } x \ge k * \end{cases} \] */ @Override public double density(double x) { if (x < scale) { return 0; } return pdf.applyAsDouble(x); } /** {@inheritDoc} * *

See documentation of {@link #density(double)} for computation details. */ @Override public double logDensity(double x) { if (x < scale) { return Double.NEGATIVE_INFINITY; } return logpdf.applyAsDouble(x); } /** * {@inheritDoc} * *

For scale parameter \( k \) and shape parameter \( \alpha \), the CDF is: * *

\[ F(x; k, \alpha) = \begin{cases} * 0 & \text{for } x \le k \\ * 1 - \left( \frac{k}{x} \right)^\alpha & \text{for } x \gt k * \end{cases} \] */ @Override public double cumulativeProbability(double x) { if (x <= scale) { return 0; } // Increase accuracy for CDF close to 0 by using a log calculation: // 1 - exp(α * ln(k / x)) == -(exp(α * ln(k / x)) - 1) return -Math.expm1(shape * Math.log(scale / x)); } /** * {@inheritDoc} * *

For scale parameter \( k \) and shape parameter \( \alpha \), the survival function is: * *

\[ S(x; k, \alpha) = \begin{cases} * 1 & \text{for } x \le k \\ * \left( \frac{k}{x} \right)^\alpha & \text{for } x \gt k * \end{cases} \] */ @Override public double survivalProbability(double x) { if (x <= scale) { return 1; } return Math.pow(scale / x, shape); } /** {@inheritDoc} */ @Override public double inverseCumulativeProbability(double p) { ArgumentUtils.checkProbability(p); if (p == 0) { return getSupportLowerBound(); } if (p == 1) { return getSupportUpperBound(); } return scale / Math.exp(Math.log1p(-p) / shape); } /** {@inheritDoc} */ @Override public double inverseSurvivalProbability(double p) { ArgumentUtils.checkProbability(p); if (p == 1) { return getSupportLowerBound(); } if (p == 0) { return getSupportUpperBound(); } return scale / Math.pow(p, 1 / shape); } /** * {@inheritDoc} * *

For scale parameter \( k \) and shape parameter \( \alpha \), the mean is: * *

\[ \mathbb{E}[X] = \begin{cases} * \infty & \text{for } \alpha \le 1 \\ * \frac{k \alpha}{(\alpha-1)} & \text{for } \alpha \gt 1 * \end{cases} \] */ @Override public double getMean() { if (shape <= 1) { return Double.POSITIVE_INFINITY; } if (shape == Double.POSITIVE_INFINITY) { return scale; } return scale * (shape / (shape - 1)); } /** * {@inheritDoc} * *

For scale parameter \( k \) and shape parameter \( \alpha \), the variance is: * *

\[ \operatorname{var}[X] = \begin{cases} * \infty & \text{for } \alpha \le 2 \\ * \frac{k^2 \alpha}{(\alpha-1)^2 (\alpha-2)} & \text{for } \alpha \gt 2 * \end{cases} \] */ @Override public double getVariance() { if (shape <= MIN_SHAPE_FOR_VARIANCE) { return Double.POSITIVE_INFINITY; } if (shape == Double.POSITIVE_INFINITY) { return 0; } final double s = shape - 1; final double z = shape / s / s / (shape - 2); // Avoid intermediate overflow of scale^2 if z is small return z < 1 ? z * scale * scale : scale * scale * z; } /** * {@inheritDoc} *

* The lower bound of the support is equal to the scale parameter {@code k}. * * @return scale. */ @Override public double getSupportLowerBound() { return getScale(); } /** * {@inheritDoc} *

* The upper bound of the support is always positive infinity. * * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}. */ @Override public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ @Override public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) { // Pareto distribution sampler return InverseTransformParetoSampler.of(rng, scale, shape)::sample; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy