org.apache.commons.statistics.distribution.TrapezoidalDistribution Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.rng.UniformRandomProvider;
/**
* Implementation of the trapezoidal distribution.
*
* The probability density function of \( X \) is:
*
*
\[ f(x; a, b, c, d) = \begin{cases}
* \frac{2}{d+c-a-b}\frac{x-a}{b-a} & \text{for } a\le x \lt b \\
* \frac{2}{d+c-a-b} & \text{for } b\le x \lt c \\
* \frac{2}{d+c-a-b}\frac{d-x}{d-c} & \text{for } c\le x \le d
* \end{cases} \]
*
*
for \( -\infty \lt a \le b \le c \le d \lt \infty \) and
* \( x \in [a, d] \).
*
*
Note the special cases:
*
* - \( b = c \) is the triangular distribution
*
- \( a = b \) and \( c = d \) is the uniform distribution
*
*
* @see Trapezoidal distribution (Wikipedia)
*/
public abstract class TrapezoidalDistribution extends AbstractContinuousDistribution {
/** Lower limit of this distribution (inclusive). */
protected final double a;
/** Start of the trapezoid constant density. */
protected final double b;
/** End of the trapezoid constant density. */
protected final double c;
/** Upper limit of this distribution (inclusive). */
protected final double d;
/**
* Specialisation of the trapezoidal distribution used when the distribution simplifies
* to an alternative distribution.
*/
private static class DelegatedTrapezoidalDistribution extends TrapezoidalDistribution {
/** Distribution delegate. */
private final ContinuousDistribution delegate;
/**
* @param a Lower limit of this distribution (inclusive).
* @param b Start of the trapezoid constant density.
* @param c End of the trapezoid constant density.
* @param d Upper limit of this distribution (inclusive).
* @param delegate Distribution delegate.
*/
DelegatedTrapezoidalDistribution(double a, double b, double c, double d,
ContinuousDistribution delegate) {
super(a, b, c, d);
this.delegate = delegate;
}
@Override
public double density(double x) {
return delegate.density(x);
}
@Override
public double probability(double x0, double x1) {
return delegate.probability(x0, x1);
}
@Override
public double logDensity(double x) {
return delegate.logDensity(x);
}
@Override
public double cumulativeProbability(double x) {
return delegate.cumulativeProbability(x);
}
@Override
public double inverseCumulativeProbability(double p) {
return delegate.inverseCumulativeProbability(p);
}
@Override
public double survivalProbability(double x) {
return delegate.survivalProbability(x);
}
@Override
public double inverseSurvivalProbability(double p) {
return delegate.inverseSurvivalProbability(p);
}
@Override
public double getMean() {
return delegate.getMean();
}
@Override
public double getVariance() {
return delegate.getVariance();
}
@Override
public Sampler createSampler(UniformRandomProvider rng) {
return delegate.createSampler(rng);
}
}
/**
* Specialisation of the trapezoidal distribution used when {@code b == c}.
*
* This delegates all methods to the triangular distribution.
*/
private static class TriangularTrapezoidalDistribution extends DelegatedTrapezoidalDistribution {
/**
* @param a Lower limit of this distribution (inclusive).
* @param b Start/end of the trapezoid constant density (mode).
* @param d Upper limit of this distribution (inclusive).
*/
TriangularTrapezoidalDistribution(double a, double b, double d) {
super(a, b, b, d, TriangularDistribution.of(a, b, d));
}
}
/**
* Specialisation of the trapezoidal distribution used when {@code a == b} and {@code c == d}.
*
*
This delegates all methods to the uniform distribution.
*/
private static class UniformTrapezoidalDistribution extends DelegatedTrapezoidalDistribution {
/**
* @param a Lower limit of this distribution (inclusive).
* @param d Upper limit of this distribution (inclusive).
*/
UniformTrapezoidalDistribution(double a, double d) {
super(a, a, d, d, UniformContinuousDistribution.of(a, d));
}
}
/**
* Regular implementation of the trapezoidal distribution.
*/
private static class RegularTrapezoidalDistribution extends TrapezoidalDistribution {
/** Cached value (d + c - a - b). */
private final double divisor;
/** Cached value (b - a). */
private final double bma;
/** Cached value (d - c). */
private final double dmc;
/** Cumulative probability at b. */
private final double cdfB;
/** Cumulative probability at c. */
private final double cdfC;
/** Survival probability at b. */
private final double sfB;
/** Survival probability at c. */
private final double sfC;
/**
* @param a Lower limit of this distribution (inclusive).
* @param b Start of the trapezoid constant density.
* @param c End of the trapezoid constant density.
* @param d Upper limit of this distribution (inclusive).
*/
RegularTrapezoidalDistribution(double a, double b, double c, double d) {
super(a, b, c, d);
// Sum positive terms
divisor = (d - a) + (c - b);
bma = b - a;
dmc = d - c;
cdfB = bma / divisor;
sfB = 1 - cdfB;
sfC = dmc / divisor;
cdfC = 1 - sfC;
}
@Override
public double density(double x) {
// Note: x < a allows correct density where a == b
if (x < a) {
return 0;
}
if (x < b) {
final double divident = (x - a) / bma;
return 2 * (divident / divisor);
}
if (x < c) {
return 2 / divisor;
}
if (x < d) {
final double divident = (d - x) / dmc;
return 2 * (divident / divisor);
}
return 0;
}
@Override
public double cumulativeProbability(double x) {
if (x <= a) {
return 0;
}
if (x < b) {
final double divident = (x - a) * (x - a) / bma;
return divident / divisor;
}
if (x < c) {
final double divident = 2 * x - b - a;
return divident / divisor;
}
if (x < d) {
final double divident = (d - x) * (d - x) / dmc;
return 1 - divident / divisor;
}
return 1;
}
@Override
public double survivalProbability(double x) {
// By symmetry:
if (x <= a) {
return 1;
}
if (x < b) {
final double divident = (x - a) * (x - a) / bma;
return 1 - divident / divisor;
}
if (x < c) {
final double divident = 2 * x - b - a;
return 1 - divident / divisor;
}
if (x < d) {
final double divident = (d - x) * (d - x) / dmc;
return divident / divisor;
}
return 0;
}
@Override
public double inverseCumulativeProbability(double p) {
ArgumentUtils.checkProbability(p);
if (p == 0) {
return a;
}
if (p == 1) {
return d;
}
if (p < cdfB) {
return a + Math.sqrt(p * divisor * bma);
}
if (p < cdfC) {
return 0.5 * ((p * divisor) + a + b);
}
return d - Math.sqrt((1 - p) * divisor * dmc);
}
@Override
public double inverseSurvivalProbability(double p) {
// By symmetry:
ArgumentUtils.checkProbability(p);
if (p == 1) {
return a;
}
if (p == 0) {
return d;
}
if (p > sfB) {
return a + Math.sqrt((1 - p) * divisor * bma);
}
if (p > sfC) {
return 0.5 * (((1 - p) * divisor) + a + b);
}
return d - Math.sqrt(p * divisor * dmc);
}
@Override
public double getMean() {
// Compute using a standardized distribution
// b' = (b-a) / (d-a)
// c' = (c-a) / (d-a)
final double scale = d - a;
final double bp = bma / scale;
final double cp = (c - a) / scale;
return nonCentralMoment(1, bp, cp) * scale + a;
}
@Override
public double getVariance() {
// Compute using a standardized distribution
// b' = (b-a) / (d-a)
// c' = (c-a) / (d-a)
final double scale = d - a;
final double bp = bma / scale;
final double cp = (c - a) / scale;
final double mu = nonCentralMoment(1, bp, cp);
return (nonCentralMoment(2, bp, cp) - mu * mu) * scale * scale;
}
/**
* Compute the {@code k}-th non-central moment of the standardized trapezoidal
* distribution.
*
*
Shifting the distribution by scale {@code (d - a)} and location {@code a}
* creates a standardized trapezoidal distribution. This has a simplified
* non-central moment as {@code a = 0, d = 1, 0 <= b < c <= 1}.
*
* 2 1 ( 1 - c^(k+2) )
* E[X^k] = ----------- -------------- ( ----------- - b^(k+1) )
* (1 + c - b) (k + 1)(k + 2) ( 1 - c )
*
*
* Simplification eliminates issues computing the moments when {@code a == b}
* or {@code c == d} in the original (non-standardized) distribution.
*
* @param k Moment to compute
* @param b Start of the trapezoid constant density (shape parameter in [0, 1]).
* @param c End of the trapezoid constant density (shape parameter in [0, 1]).
* @return the moment
*/
private static double nonCentralMoment(int k, double b, double c) {
// As c -> 1 then (1 - c^(k+2)) loses precision
// 1 - x^y == -(x^y - 1) [high precision powm1]
// == -(exp(y * log(x)) - 1)
// Note: avoid log(1) using the limit:
// (1 - c^(k+2)) / (1-c) -> (k+2) as c -> 1
final double term1 = c == 1 ? k + 2 : Math.expm1((k + 2) * Math.log(c)) / (c - 1);
final double term2 = Math.pow(b, k + 1);
return 2 * ((term1 - term2) / (c - b + 1) / ((k + 1) * (k + 2)));
}
}
/**
* @param a Lower limit of this distribution (inclusive).
* @param b Start of the trapezoid constant density.
* @param c End of the trapezoid constant density.
* @param d Upper limit of this distribution (inclusive).
*/
TrapezoidalDistribution(double a, double b, double c, double d) {
this.a = a;
this.b = b;
this.c = c;
this.d = d;
}
/**
* Creates a trapezoidal distribution.
*
*
The distribution density is represented as an up sloping line from
* {@code a} to {@code b}, constant from {@code b} to {@code c}, and then a down
* sloping line from {@code c} to {@code d}.
*
* @param a Lower limit of this distribution (inclusive).
* @param b Start of the trapezoid constant density (first shape parameter).
* @param c End of the trapezoid constant density (second shape parameter).
* @param d Upper limit of this distribution (inclusive).
* @return the distribution
* @throws IllegalArgumentException if {@code a >= d}, if {@code b < a}, if
* {@code c < b} or if {@code c > d}.
*/
public static TrapezoidalDistribution of(double a, double b, double c, double d) {
if (a >= d) {
throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GTE_HIGH,
a, d);
}
if (b < a) {
throw new DistributionException(DistributionException.TOO_SMALL,
b, a);
}
if (c < b) {
throw new DistributionException(DistributionException.TOO_SMALL,
c, b);
}
if (c > d) {
throw new DistributionException(DistributionException.TOO_LARGE,
c, d);
}
// For consistency, delegate to the appropriate simplified distribution.
// Note: Floating-point equality comparison is intentional.
if (b == c) {
return new TriangularTrapezoidalDistribution(a, b, d);
}
if (d - a == c - b) {
return new UniformTrapezoidalDistribution(a, d);
}
return new RegularTrapezoidalDistribution(a, b, c, d);
}
/**
* {@inheritDoc}
*
*
For lower limit \( a \), start of the density constant region \( b \),
* end of the density constant region \( c \) and upper limit \( d \), the
* mean is:
*
*
\[ \frac{1}{3(d+c-b-a)}\left(\frac{d^3-c^3}{d-c}-\frac{b^3-a^3}{b-a}\right) \]
*/
@Override
public abstract double getMean();
/**
* {@inheritDoc}
*
*
For lower limit \( a \), start of the density constant region \( b \),
* end of the density constant region \( c \) and upper limit \( d \), the
* variance is:
*
*
\[ \frac{1}{6(d+c-b-a)}\left(\frac{d^4-c^4}{d-c}-\frac{b^4-a^4}{b-a}\right) - \mu^2 \]
*
*
where \( \mu \) is the mean.
*/
@Override
public abstract double getVariance();
/**
* Gets the start of the constant region of the density function.
*
*
This is the first shape parameter {@code b} of the distribution.
*
* @return the first shape parameter {@code b}
*/
public double getB() {
return b;
}
/**
* Gets the end of the constant region of the density function.
*
*
This is the second shape parameter {@code c} of the distribution.
*
* @return the second shape parameter {@code c}
*/
public double getC() {
return c;
}
/**
* {@inheritDoc}
*
*
The lower bound of the support is equal to the lower limit parameter
* {@code a} of the distribution.
*/
@Override
public double getSupportLowerBound() {
return a;
}
/**
* {@inheritDoc}
*
*
The upper bound of the support is equal to the upper limit parameter
* {@code d} of the distribution.
*/
@Override
public double getSupportUpperBound() {
return d;
}
}