org.apache.commons.statistics.distribution.UniformDiscreteDistribution Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.statistics.distribution;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.DiscreteUniformSampler;
/**
* Implementation of the uniform discrete distribution.
*
* The probability mass function of \( X \) is:
*
*
\[ f(k; a, b) = \frac{1}{b-a+1} \]
*
*
for integer \( a, b \) and \( a \le b \) and
* \( k \in [a, b] \).
*
* @see
* Uniform distribution (discrete) (Wikipedia)
* @see
* Discrete uniform distribution (MathWorld)
*/
public final class UniformDiscreteDistribution extends AbstractDiscreteDistribution {
/** Lower bound (inclusive) of this distribution. */
private final int lower;
/** Upper bound (inclusive) of this distribution. */
private final int upper;
/** "upper" - "lower" + 1 (as a double to avoid overflow). */
private final double upperMinusLowerPlus1;
/** Cache of the probability. */
private final double pmf;
/** Cache of the log probability. */
private final double logPmf;
/** Value of survival probability for x=0. Used in the inverse survival function. */
private final double sf0;
/**
* @param lower Lower bound (inclusive) of this distribution.
* @param upper Upper bound (inclusive) of this distribution.
*/
private UniformDiscreteDistribution(int lower,
int upper) {
this.lower = lower;
this.upper = upper;
upperMinusLowerPlus1 = (double) upper - lower + 1;
pmf = 1.0 / upperMinusLowerPlus1;
logPmf = -Math.log(upperMinusLowerPlus1);
sf0 = (upperMinusLowerPlus1 - 1) / upperMinusLowerPlus1;
}
/**
* Creates a new uniform discrete distribution.
*
* @param lower Lower bound (inclusive) of this distribution.
* @param upper Upper bound (inclusive) of this distribution.
* @return the distribution
* @throws IllegalArgumentException if {@code lower > upper}.
*/
public static UniformDiscreteDistribution of(int lower,
int upper) {
if (lower > upper) {
throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GT_HIGH,
lower, upper);
}
return new UniformDiscreteDistribution(lower, upper);
}
/** {@inheritDoc} */
@Override
public double probability(int x) {
if (x < lower || x > upper) {
return 0;
}
return pmf;
}
/** {@inheritDoc} */
@Override
public double probability(int x0,
int x1) {
if (x0 > x1) {
throw new DistributionException(DistributionException.INVALID_RANGE_LOW_GT_HIGH, x0, x1);
}
if (x0 >= upper || x1 < lower) {
// (x0, x1] does not overlap [lower, upper]
return 0;
}
// x0 < upper
// x1 >= lower
// Find the range between x0 (exclusive) and x1 (inclusive) within [lower, upper].
// In the case of x0 < lower set l so that u - l == (u - lower) + 1
// long arithmetic prevents overflow
final long l = Math.max(lower - 1L, x0);
final long u = Math.min(upper, x1);
return (u - l) / upperMinusLowerPlus1;
}
/** {@inheritDoc} */
@Override
public double logProbability(int x) {
if (x < lower || x > upper) {
return Double.NEGATIVE_INFINITY;
}
return logPmf;
}
/** {@inheritDoc} */
@Override
public double cumulativeProbability(int x) {
if (x <= lower) {
// Note: CDF(x=0) = PDF(x=0)
return x == lower ? pmf : 0;
}
if (x >= upper) {
return 1;
}
return ((double) x - lower + 1) / upperMinusLowerPlus1;
}
/** {@inheritDoc} */
@Override
public double survivalProbability(int x) {
if (x <= lower) {
// Note: SF(x=0) = 1 - PDF(x=0)
// Use a pre-computed value to avoid cancellation when probabilityOfSuccess -> 0
return x == lower ? sf0 : 1;
}
if (x >= upper) {
return 0;
}
return ((double) upper - x) / upperMinusLowerPlus1;
}
/** {@inheritDoc} */
@Override
public int inverseCumulativeProbability(double p) {
ArgumentUtils.checkProbability(p);
if (p > sf0) {
return upper;
}
if (p <= pmf) {
return lower;
}
// p in ( pmf , sf0 ]
// p in ( 1 / {u-l+1} , {u-l} / {u-l+1} ]
// x in ( l , u-1 ]
int x = (int) (lower + Math.ceil(p * upperMinusLowerPlus1) - 1);
// Correct rounding errors.
// This ensures x == icdf(cdf(x))
// Note: Directly computing the CDF(x-1) avoids integer overflow if x=min_value
if (((double) x - lower) / upperMinusLowerPlus1 >= p) {
// No check for x > lower: cdf(x=lower) = 0 and thus is below p
// cdf(x-1) >= p
x--;
} else if (((double) x - lower + 1) / upperMinusLowerPlus1 < p) {
// No check for x < upper: cdf(x=upper) = 1 and thus is above p
// cdf(x) < p
x++;
}
return x;
}
/** {@inheritDoc} */
@Override
public int inverseSurvivalProbability(final double p) {
ArgumentUtils.checkProbability(p);
if (p < pmf) {
return upper;
}
if (p >= sf0) {
return lower;
}
// p in [ pmf , sf0 )
// p in [ 1 / {u-l+1} , {u-l} / {u-l+1} )
// x in [ u-1 , l )
int x = (int) (upper - Math.floor(p * upperMinusLowerPlus1));
// Correct rounding errors.
// This ensures x == isf(sf(x))
// Note: Directly computing the SF(x-1) avoids integer overflow if x=min_value
if (((double) upper - x + 1) / upperMinusLowerPlus1 <= p) {
// No check for x > lower: sf(x=lower) = 1 and thus is above p
// sf(x-1) <= p
x--;
} else if (((double) upper - x) / upperMinusLowerPlus1 > p) {
// No check for x < upper: sf(x=upper) = 0 and thus is below p
// sf(x) > p
x++;
}
return x;
}
/**
* {@inheritDoc}
*
*
For lower bound \( a \) and upper bound \( b \), the mean is \( \frac{1}{2} (a + b) \).
*/
@Override
public double getMean() {
// Avoid overflow
return 0.5 * ((double) upper + lower);
}
/**
* {@inheritDoc}
*
*
For lower bound \( a \) and upper bound \( b \), the variance is:
*
*
\[ \frac{1}{12} (n^2 - 1) \]
*
*
where \( n = b - a + 1 \).
*/
@Override
public double getVariance() {
return (upperMinusLowerPlus1 * upperMinusLowerPlus1 - 1) / 12;
}
/**
* {@inheritDoc}
*
*
The lower bound of the support is equal to the lower bound parameter
* of the distribution.
*/
@Override
public int getSupportLowerBound() {
return lower;
}
/**
* {@inheritDoc}
*
*
The upper bound of the support is equal to the upper bound parameter
* of the distribution.
*/
@Override
public int getSupportUpperBound() {
return upper;
}
/** {@inheritDoc} */
@Override
public DiscreteDistribution.Sampler createSampler(final UniformRandomProvider rng) {
// Discrete uniform distribution sampler.
return DiscreteUniformSampler.of(rng, lower, upper)::sample;
}
}