All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.distribution.WeibullDistribution Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.statistics.distribution;

import org.apache.commons.numbers.gamma.LogGamma;
import org.apache.commons.rng.UniformRandomProvider;
import org.apache.commons.rng.sampling.distribution.ZigguratSampler;

/**
 * Implementation of the Weibull distribution.
 *
 * 

The probability density function of \( X \) is: * *

\[ f(x;k,\lambda) = \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^{k}} \] * *

for \( k > 0 \) the shape, * \( \lambda > 0 \) the scale, and * \( x \in (0, \infty) \). * *

Note the special cases: *

    *
  • \( k = 1 \) is the exponential distribution *
  • \( k = 2 \) is the Rayleigh distribution with scale \( \sigma = \frac {\lambda}{\sqrt{2}} \) *
* * @see Weibull distribution (Wikipedia) * @see Weibull distribution (MathWorld) */ public final class WeibullDistribution extends AbstractContinuousDistribution { /** Support lower bound. */ private static final double SUPPORT_LO = 0; /** Support upper bound. */ private static final double SUPPORT_HI = Double.POSITIVE_INFINITY; /** The shape parameter. */ private final double shape; /** The scale parameter. */ private final double scale; /** shape / scale. */ private final double shapeOverScale; /** log(shape / scale). */ private final double logShapeOverScale; /** * @param shape Shape parameter. * @param scale Scale parameter. */ private WeibullDistribution(double shape, double scale) { this.scale = scale; this.shape = shape; shapeOverScale = shape / scale; logShapeOverScale = Math.log(shapeOverScale); } /** * Creates a Weibull distribution. * * @param shape Shape parameter. * @param scale Scale parameter. * @return the distribution * @throws IllegalArgumentException if {@code shape <= 0} or {@code scale <= 0}. */ public static WeibullDistribution of(double shape, double scale) { if (shape <= 0) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, shape); } if (scale <= 0) { throw new DistributionException(DistributionException.NOT_STRICTLY_POSITIVE, scale); } return new WeibullDistribution(shape, scale); } /** * Gets the shape parameter of this distribution. * * @return the shape parameter. */ public double getShape() { return shape; } /** * Gets the scale parameter of this distribution. * * @return the scale parameter. */ public double getScale() { return scale; } /** {@inheritDoc} * *

Returns the limit when {@code x = 0}: *

    *
  • {@code shape < 1}: Infinity *
  • {@code shape == 1}: 1 / scale *
  • {@code shape > 1}: 0 *
*/ @Override public double density(double x) { if (x <= SUPPORT_LO || x >= SUPPORT_HI) { // Special case x=0 if (x == SUPPORT_LO && shape <= 1) { return shape == 1 ? // Exponential distribution shapeOverScale : Double.POSITIVE_INFINITY; } return 0; } final double xscale = x / scale; final double xscalepow = Math.pow(xscale, shape - 1); /* * Math.pow(x / scale, shape) = * Math.pow(xscale, shape) = * Math.pow(xscale, shape - 1) * xscale */ final double xscalepowshape = xscalepow * xscale; return shapeOverScale * xscalepow * Math.exp(-xscalepowshape); } /** {@inheritDoc} * *

Returns the limit when {@code x = 0}: *

    *
  • {@code shape < 1}: Infinity *
  • {@code shape == 1}: log(1 / scale) *
  • {@code shape > 1}: -Infinity *
*/ @Override public double logDensity(double x) { if (x <= SUPPORT_LO || x >= SUPPORT_HI) { // Special case x=0 if (x == SUPPORT_LO && shape <= 1) { return shape == 1 ? // Exponential distribution logShapeOverScale : Double.POSITIVE_INFINITY; } return Double.NEGATIVE_INFINITY; } final double xscale = x / scale; final double logxscalepow = Math.log(xscale) * (shape - 1); /* * Math.pow(x / scale, shape) = * Math.pow(xscale, shape) = * Math.pow(xscale, shape - 1) * xscale * Math.exp(log(xscale) * (shape - 1)) * xscale */ final double xscalepowshape = Math.exp(logxscalepow) * xscale; return logShapeOverScale + logxscalepow - xscalepowshape; } /** {@inheritDoc} */ @Override public double cumulativeProbability(double x) { if (x <= SUPPORT_LO) { return 0; } return -Math.expm1(-Math.pow(x / scale, shape)); } /** {@inheritDoc} */ @Override public double survivalProbability(double x) { if (x <= SUPPORT_LO) { return 1; } return Math.exp(-Math.pow(x / scale, shape)); } /** * {@inheritDoc} * *

Returns {@code 0} when {@code p == 0} and * {@link Double#POSITIVE_INFINITY} when {@code p == 1}. */ @Override public double inverseCumulativeProbability(double p) { ArgumentUtils.checkProbability(p); if (p == 0) { return 0.0; } else if (p == 1) { return Double.POSITIVE_INFINITY; } return scale * Math.pow(-Math.log1p(-p), 1.0 / shape); } /** * {@inheritDoc} * *

Returns {@code 0} when {@code p == 1} and * {@link Double#POSITIVE_INFINITY} when {@code p == 0}. */ @Override public double inverseSurvivalProbability(double p) { ArgumentUtils.checkProbability(p); if (p == 1) { return 0.0; } else if (p == 0) { return Double.POSITIVE_INFINITY; } return scale * Math.pow(-Math.log(p), 1.0 / shape); } /** * {@inheritDoc} * *

For shape parameter \( k \) and scale parameter \( \lambda \), the mean is: * *

\[ \lambda \, \Gamma(1+\frac{1}{k}) \] * *

where \( \Gamma \) is the Gamma-function. */ @Override public double getMean() { final double sh = getShape(); final double sc = getScale(); // Special case of exponential when shape is 1 return sh == 1 ? sc : sc * Math.exp(LogGamma.value(1 + (1 / sh))); } /** * {@inheritDoc} * *

For shape parameter \( k \) and scale parameter \( \lambda \), the variance is: * *

\[ \lambda^2 \left[ \Gamma\left(1+\frac{2}{k}\right) - * \left(\Gamma\left(1+\frac{1}{k}\right)\right)^2 \right] \] * *

where \( \Gamma \) is the Gamma-function. */ @Override public double getVariance() { final double sh = getShape(); final double sc = getScale(); final double mn = getMean(); // Special case of exponential when shape is 1 return sh == 1 ? sc * sc : (sc * sc) * Math.exp(LogGamma.value(1 + (2 / sh))) - (mn * mn); } /** * {@inheritDoc} * *

The lower bound of the support is always 0. * * @return 0. */ @Override public double getSupportLowerBound() { return SUPPORT_LO; } /** * {@inheritDoc} * *

The upper bound of the support is always positive infinity. * * @return {@linkplain Double#POSITIVE_INFINITY positive infinity}. */ @Override public double getSupportUpperBound() { return SUPPORT_HI; } /** {@inheritDoc} */ @Override public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) { // Special case: shape=1 is the exponential distribution if (shape == 1) { // Exponential distribution sampler. return ZigguratSampler.Exponential.of(rng, scale)::sample; } return super.createSampler(rng); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy