All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.statistics.inference.KolmogorovSmirnovDistribution Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.statistics.inference;

import java.util.Arrays;
import org.apache.commons.numbers.combinatorics.Factorial;
import org.apache.commons.numbers.combinatorics.LogFactorial;
import org.apache.commons.numbers.core.DD;
import org.apache.commons.numbers.core.DDMath;
import org.apache.commons.numbers.core.Sum;
import org.apache.commons.statistics.inference.SquareMatrixSupport.RealSquareMatrix;

/**
 * Computes the complementary probability for the one-sample Kolmogorov-Smirnov distribution.
 *
 * @since 1.1
 */
final class KolmogorovSmirnovDistribution {
    /** pi^2. */
    private static final double PI2 = 9.8696044010893586188344909;
    /** sqrt(2*pi). */
    private static final double ROOT_TWO_PI = 2.5066282746310005024157652;
    /** Value of x when the KS sum is 0.5. */
    private static final double X_KS_HALF = 0.8275735551899077;
    /** Value of x when the KS sum is 1.0. */
    private static final double X_KS_ONE = 0.1754243674345323;
    /** Machine epsilon, 2^-52. */
    private static final double EPS = 0x1.0p-52;

    /** No instances. */
    private KolmogorovSmirnovDistribution() {}

    /**
     * Computes the complementary probability {@code P[D_n >= x]}, or survival function (SF),
     * for the two-sided one-sample Kolmogorov-Smirnov distribution.
     *
     * 
     * D_n = sup_x |F(x) - CDF_n(x)|
     * 
* *

where {@code n} is the sample size; {@code CDF_n(x)} is an empirical * cumulative distribution function; and {@code F(x)} is the expected * distribution. * *

* References: *

    *
  1. Simard, R., & L’Ecuyer, P. (2011). * Computing the Two-Sided Kolmogorov-Smirnov Distribution. * Journal of Statistical Software, 39(11), 1–18. *
  2. * Marsaglia, G., Tsang, W. W., & Wang, J. (2003). * Evaluating Kolmogorov's Distribution. * Journal of Statistical Software, 8(18), 1–4. *
* *

Note that [2] contains an error in computing h, refer to MATH-437 for details. * * @since 1.1 */ static final class Two { /** pi^2. */ private static final double PI2 = 9.8696044010893586188344909; /** pi^4. */ private static final double PI4 = 97.409091034002437236440332; /** pi^6. */ private static final double PI6 = 961.38919357530443703021944; /** sqrt(2*pi). */ private static final double ROOT_TWO_PI = 2.5066282746310005024157652; /** sqrt(pi/2). */ private static final double ROOT_HALF_PI = 1.2533141373155002512078826; /** Threshold for Pelz-Good where the 1 - CDF == 1. * Occurs when sqrt(2pi/z) exp(-pi^2 / (8 z^2)) is far below 2^-53. * Threshold set at exp(-pi^2 / (8 z^2)) = 2^-80. */ private static final double LOG_PG_MIN = -55.451774444795625; /** Factor 4a in the quadratic equation to solve max k: log(2^-52) * 8. */ private static final double FOUR_A = -288.3492271129372; /** The scaling threshold in the MTW algorithm. Marsaglia used 1e-140. This uses 2^-400 ~ 3.87e-121. */ private static final double MTW_SCALE_THRESHOLD = 0x1.0p-400; /** The up-scaling factor in the MTW algorithm. Marsaglia used 1e140. This uses 2^400 ~ 2.58e120. */ private static final double MTW_UP_SCALE = 0x1.0p400; /** The power-of-2 of the up-scaling factor in the MTW algorithm, n if the up-scale factor is 2^n. */ private static final int MTW_UP_SCALE_POWER = 400; /** The scaling threshold in the Pomeranz algorithm. */ private static final double P_DOWN_SCALE = 0x1.0p-128; /** The up-scaling factor in the Pomeranz algorithm. */ private static final double P_UP_SCALE = 0x1.0p128; /** The power-of-2 of the up-scaling factor in the Pomeranz algorithm, n if the up-scale factor is 2^n. */ private static final int P_SCALE_POWER = 128; /** Maximum finite factorial. */ private static final int MAX_FACTORIAL = 170; /** Approximate threshold for ln(MIN_NORMAL). */ private static final int LOG_MIN_NORMAL = -708; /** 140, n threshold for small n for the sf computation.*/ private static final int N140 = 140; /** 0.754693, nxx threshold for small n Durbin matrix sf computation. */ private static final double NXX_0_754693 = 0.754693; /** 4, nxx threshold for small n Pomeranz sf computation. */ private static final int NXX_4 = 4; /** 2.2, nxx threshold for large n Miller approximation sf computation. */ private static final double NXX_2_2 = 2.2; /** 100000, n threshold for large n Durbin matrix sf computation. */ private static final int N_100000 = 100000; /** 1.4, nx^(3/2) threshold for large n Durbin matrix sf computation. */ private static final double NX32_1_4 = 1.4; /** 1/2. */ private static final double HALF = 0.5; /** No instances. */ private Two() {} /** * Calculates complementary probability {@code P[D_n >= x]} for the two-sided * one-sample Kolmogorov-Smirnov distribution. * * @param x Statistic. * @param n Sample size (assumed to be positive). * @return \(P(D_n ≥ x)\) */ static double sf(double x, int n) { final double p = sfExact(x, n); if (p >= 0) { return p; } // The computation is divided based on the x-n plane. final double nxx = n * x * x; if (n <= N140) { // 10 decimal digits of precision // nx^2 < 4 use 1 - CDF(x). if (nxx < NXX_0_754693) { // Durbin matrix (MTW) return 1 - durbinMTW(x, n); } if (nxx < NXX_4) { // Pomeranz return 1 - pomeranz(x, n); } // Miller approximation: 2 * one-sided D+ computation return 2 * One.sf(x, n); } // n > 140 if (nxx >= NXX_2_2) { // 6 decimal digits of precision // Miller approximation: 2 * one-sided D+ computation return 2 * One.sf(x, n); } // nx^2 < 2.2 use 1 - CDF(x). // 5 decimal digits of precision (for n < 200000) // nx^1.5 <= 1.4 if (n <= N_100000 && n * Math.pow(x, 1.5) < NX32_1_4) { // Durbin matrix (MTW) return 1 - durbinMTW(x, n); } // Pelz-Good, algorithm modified to sum negative terms from 1 for the SF. // (precision increases with n) return pelzGood(x, n); } /** * Calculates exact cases for the complementary probability * {@code P[D_n >= x]} the two-sided one-sample Kolmogorov-Smirnov distribution. * *

Exact cases handle x not in [0, 1]. It is assumed n is positive. * * @param x Statistic. * @param n Sample size (assumed to be positive). * @return \(P(D_n ≥ x)\) */ private static double sfExact(double x, int n) { if (n * x * x >= 370 || x >= 1) { // p would underflow, or x is out of the domain return 0; } final double nx = x * n; if (nx <= 1) { // x <= 1/(2n) if (nx <= HALF) { // Also detects x <= 0 (iff n is positive) return 1; } if (n == 1) { // Simplification of: // 1 - (n! (2x - 1/n)^n) == 1 - (2x - 1) return 2.0 - 2.0 * x; } // 1/(2n) < x <= 1/n // 1 - (n! (2x - 1/n)^n) final double f = 2 * x - 1.0 / n; // Switch threshold where (2x - 1/n)^n is sub-normal // Max factorial threshold is n=170 final double logf = Math.log(f); if (n <= MAX_FACTORIAL && n * logf > LOG_MIN_NORMAL) { return 1 - Factorial.doubleValue(n) * Math.pow(f, n); } return -Math.expm1(LogFactorial.create().value(n) + n * logf); } // 1 - 1/n <= x < 1 if (n - 1 <= nx) { // 2 * (1-x)^n return 2 * Math.pow(1 - x, n); } return -1; } /** * Computes the Durbin matrix approximation for {@code P(D_n < d)} using the method * of Marsaglia, Tsang and Wang (2003). * * @param x Statistic. * @param n Sample size (assumed to be positive). * @return \(P(D_n < x)\) */ private static double durbinMTW(double x, int n) { final int k = (int) Math.ceil(n * x); final RealSquareMatrix h = createH(x, n).power(n); // Use scaling as per Marsaglia's code to avoid underflow. double pFrac = h.get(k - 1, k - 1); int scale = h.scale(); // Omit i == n as this is a no-op for (int i = 1; i < n; ++i) { pFrac *= (double) i / n; if (pFrac < MTW_SCALE_THRESHOLD) { pFrac *= MTW_UP_SCALE; scale -= MTW_UP_SCALE_POWER; } } // Return the CDF return clipProbability(Math.scalb(pFrac, scale)); } /*** * Creates {@code H} of size {@code m x m} as described in [1]. * * @param x Statistic. * @param n Sample size (assumed to be positive). * @return H matrix */ private static RealSquareMatrix createH(double x, int n) { // MATH-437: // This is *not* (int) (n * x) + 1. // This is only ever called when 1/n < x < 1 - 1/n. // => h cannot be >= 1 when using ceil. h can be 0 if nx is integral. final int k = (int) Math.ceil(n * x); final double h = k - n * x; final int m = 2 * k - 1; final double[] data = new double[m * m]; // Start by filling everything with either 0 or 1. for (int i = 0; i < m; ++i) { // h[i][j] = i - j + 1 < 0 ? 0 : 1 // => h[i][j<=i+1] = 1 final int jend = Math.min(m - 1, i + 1); for (int j = i * m; j <= i * m + jend; j++) { data[j] = 1; } } // Setting up power-array to avoid calculating the same value twice: // hp[0] = h^1, ..., hp[m-1] = h^m final double[] hp = new double[m]; hp[0] = h; for (int i = 1; i < m; ++i) { // Avoid compound rounding errors using h * hp[i - 1] // with Math.pow as it is within 1 ulp of the exact result hp[i] = Math.pow(h, i + 1); } // First column and last row has special values (each other reversed). for (int i = 0; i < m; ++i) { data[i * m] -= hp[i]; data[(m - 1) * m + i] -= hp[m - i - 1]; } // [1] states: "For 1/2 < h < 1 the bottom left element of the matrix should be // (1 - 2*h^m + (2h - 1)^m )/m!" if (2 * h - 1 > 0) { data[(m - 1) * m] += Math.pow(2 * h - 1, m); } // Aside from the first column and last row, the (i, j)-th element is 1/(i - j + 1)! if i - // j + 1 >= 0, else 0. 1's and 0's are already put, so only division with (i - j + 1)! is // needed in the elements that have 1's. Note that i - j + 1 > 0 <=> i + 1 > j instead of // j'ing all the way to m. Also note that we can use pre-computed factorials given // the limits where this method is called. for (int i = 0; i < m; ++i) { final int im = i * m; for (int j = 0; j < i + 1; ++j) { // Here (i - j + 1 > 0) // Divide by (i - j + 1)! // Note: This method is used when: // n <= 140; nxx < 0.754693 // n <= 100000; n x^1.5 < 1.4 // max m ~ 2nx ~ (1.4/1e5)^(2/3) * 2e5 = 116 // Use a tabulated factorial data[im + j] /= Factorial.doubleValue(i - j + 1); } } return SquareMatrixSupport.create(m, data); } /** * Computes the Pomeranz approximation for {@code P(D_n < d)} using the method * as described in Simard and L’Ecuyer (2011). * *

Modifications have been made to the scaling of the intermediate values. * * @param x Statistic. * @param n Sample size (assumed to be positive). * @return \(P(D_n < x)\) */ private static double pomeranz(double x, int n) { final double t = n * x; // Store floor(A-t) and ceil(A+t). This does not require computing A. final int[] amt = new int[2 * n + 3]; final int[] apt = new int[2 * n + 3]; computeA(n, t, amt, apt); // Precompute ((A[i] - A[i-1])/n)^(j-k) / (j-k)! // A[i] - A[i-1] has 4 possible values (based on multiples of A2) // A1 - A0 = 0 - 0 = 0 // A2 - A1 = A2 - 0 = A2 // A3 - A2 = (1 - A2) - A2 = 1 - 2 * A2 // A4 - A3 = (A2 + 1) - (1 - A2) = 2 * A2 // A5 - A4 = (1 - A2 + 1) - (A2 + 1) = 1 - 2 * A2 // A6 - A5 = (A2 + 1 + 1) - (1 - A2 + 1) = 2 * A2 // A7 - A6 = (1 - A2 + 1 + 1) - (A2 + 1 + 1) = 1 - 2 * A2 // A8 - A7 = (A2 + 1 + 1 + 1) - (1 - A2 + 1 + 1) = 2 * A2 // ... // Ai - Ai-1 = ((i-1)/2 - A2) - (A2 + (i-2)/2) = 1 - 2 * A2 ; i = odd // Ai - Ai-1 = (A2 + (i-1)/2) - ((i-2)/2 - A2) = 2 * A2 ; i = even // ... // A2n+2 - A2n+1 = n - (n - A2) = A2 // ap[][j - k] = ((A[i] - A[i-1])/n)^(j-k) / (j-k)! // for each case: A[i] - A[i-1] in [A2, 1 - 2 * A2, 2 * A2] // Ignore case 0 as this is not used. Factors are ap[0] = 1, else 0. // If A2==0.5 then this is computed as a no-op due to multiplication by zero. final int n2 = n + 2; final double[][] ap = new double[3][n2]; final double a2 = Math.min(t - Math.floor(t), Math.ceil(t) - t); computeAP(ap[0], a2 / n); computeAP(ap[1], (1 - 2 * a2) / n); computeAP(ap[2], (2 * a2) / n); // Current and previous V double[] vc = new double[n2]; double[] vp = new double[n2]; // Count of re-scaling int scale = 0; // V_1,1 = 1 vc[1] = 1; for (int i = 2; i <= 2 * n + 2; i++) { final double[] v = vc; vc = vp; vp = v; // This is useful for following current values of vc Arrays.fill(vc, 0); // Select (A[i] - A[i-1]) factor final double[] p; if (i == 2 || i == 2 * n + 2) { // First or last p = ap[0]; } else { // odd: [1] 1 - 2 * 2A // even: [2] 2 * A2 p = ap[2 - (i & 1)]; } // Set limits. // j is the ultimate bound for k and should be in [1, n+1] final int jmin = Math.max(1, amt[i] + 2); final int jmax = Math.min(n + 1, apt[i]); final int k1 = Math.max(1, amt[i - 1] + 2); // All numbers will reduce in size. // Maintain the largest close to 1.0. // This is a change from Simard and L’Ecuyer which scaled based on the smallest. double max = 0; for (int j = jmin; j <= jmax; j++) { final int k2 = Math.min(j, apt[i - 1]); // Accurate sum. // vp[high] is smaller // p[high] is smaller // Sum ascending has smaller products first. double sum = 0; for (int k = k1; k <= k2; k++) { sum += vp[k] * p[j - k]; } vc[j] = sum; if (max < sum) { // Note: max *may* always be the first sum: vc[jmin] max = sum; } } // Rescale if too small if (max < P_DOWN_SCALE) { // Only scale in current range from V for (int j = jmin; j <= jmax; j++) { vc[j] *= P_UP_SCALE; } scale -= P_SCALE_POWER; } } // F_n(x) = n! V_{2n+2,n+1} double v = vc[n + 1]; // This method is used when n < 140 where all n! are finite. // v is below 1 so we can directly compute the result without using logs. v *= Factorial.doubleValue(n); // Return the CDF (rescaling as required) return Math.scalb(v, scale); } /** * Compute the power factors. *

         * factor[j] = z^j / j!
         * 
* * @param p Power factors. * @param z (A[i] - A[i-1]) / n */ private static void computeAP(double[] p, double z) { // Note z^0 / 0! = 1 for any z p[0] = 1; p[1] = z; for (int j = 2; j < p.length; j++) { // Only used when n <= 140 and can use the tabulated values of n! // This avoids using recursion: p[j] = z * p[j-1] / j. // Direct computation more closely agrees with the recursion using BigDecimal // with 200 digits of precision. p[j] = Math.pow(z, j) / Factorial.doubleValue(j); } } /** * Compute the factors floor(A-t) and ceil(A+t). * Arrays should have length 2n+3. * * @param n Sample size. * @param t Statistic x multiplied by n. * @param amt floor(A-t) * @param apt ceil(A+t) */ // package-private for testing static void computeA(int n, double t, int[] amt, int[] apt) { final int l = (int) Math.floor(t); final double f = t - l; final int limit = 2 * n + 2; // 3-cases if (f > HALF) { // Case (iii): 1/2 < f < 1 // for i = 1, 2, ... for (int j = 2; j <= limit; j += 2) { final int i = j >>> 1; amt[j] = i - 2 - l; apt[j] = i + l; } // for i = 0, 1, 2, ... for (int j = 1; j <= limit; j += 2) { final int i = j >>> 1; amt[j] = i - 1 - l; apt[j] = i + 1 + l; } } else if (f > 0) { // Case (ii): 0 < f <= 1/2 amt[1] = -l - 1; apt[1] = l + 1; // for i = 1, 2, ... for (int j = 2; j <= limit; j++) { final int i = j >>> 1; amt[j] = i - 1 - l; apt[j] = i + l; } } else { // Case (i): f = 0 // for i = 1, 2, ... for (int j = 2; j <= limit; j += 2) { final int i = j >>> 1; amt[j] = i - 1 - l; apt[j] = i - 1 + l; } // for i = 0, 1, 2, ... for (int j = 1; j <= limit; j += 2) { final int i = j >>> 1; amt[j] = i - l; apt[j] = i + l; } } } /** * Computes the Pelz-Good approximation for {@code P(D_n >= d)} as described in * Simard and L’Ecuyer (2011). * *

This has been modified to compute the complementary CDF by subtracting the * terms k0, k1, k2, k3 from 1. For use in computing the CDF the method should * be updated to return the sum of k0 ... k3. * * @param x Statistic. * @param n Sample size (assumed to be positive). * @return \(P(D_n ≥ x)\) * @throws ArithmeticException if the series does not converge */ // package-private for testing static double pelzGood(double x, int n) { // Change the variable to z since approximation is for the distribution evaluated at d / sqrt(n) final double z2 = x * x * n; double lne = -PI2 / (8 * z2); // Final result is ~ (1 - K0) ~ 1 - sqrt(2pi/z) exp(-pi^2 / (8 z^2)) // Do not compute when the exp value is far below eps. if (lne < LOG_PG_MIN) { // z ~ sqrt(-pi^2/(8*min)) ~ 0.1491 return 1; } // Note that summing K1, ..., K3 over all k with factor // (k + 1/2) is equivalent to summing over all k with // 2 (k - 1/2) / 2 == (2k - 1) / 2 // This is the form for K0. // Compute all together over odd integers and divide factors // of (k + 1/2)^b by 2^b. double k0 = 0; double k1 = 0; double k2 = 0; double k3 = 0; final double rootN = Math.sqrt(n); final double z = x * rootN; final double z3 = z * z2; final double z4 = z2 * z2; final double z6 = Math.pow(z2, 3); final double z7 = Math.pow(z2, 3.5); final double z8 = Math.pow(z2, 4); final double z10 = Math.pow(z2, 5); final double a1 = PI2 / 4; final double a2 = 6 * z6 + 2 * z4; final double b2 = (PI2 * (2 * z4 - 5 * z2)) / 4; final double c2 = (PI4 * (1 - 2 * z2)) / 16; final double a3 = (PI6 * (5 - 30 * z2)) / 64; final double b3 = (PI4 * (-60 * z2 + 212 * z4)) / 16; final double c3 = (PI2 * (135 * z4 - 96 * z6)) / 4; final double d3 = -(30 * z6 + 90 * z8); // Iterate j=(2k - 1) for k=1, 2, ... // Terms reduce in size. Stop when: // exp(-pi^2 / 8z^2) * eps = exp((2k-1)^2 * -pi^2 / 8z^2) // (2k-1)^2 = 1 - log(eps) * 8z^2 / pi^2 // 0 = k^2 - k + log(eps) * 2z^2 / pi^2 // Solve using quadratic equation and eps = ulp(1.0): 4a ~ -288 final int max = (int) Math.ceil((1 + Math.sqrt(1 - FOUR_A * z2 / PI2)) / 2); // Sum smallest terms first for (int k = max; k > 0; k--) { final int j = 2 * k - 1; // Create (2k-1)^2; (2k-1)^4; (2k-1)^6 final double j2 = (double) j * j; final double j4 = Math.pow(j, 4); final double j6 = Math.pow(j, 6); // exp(-pi^2 * (2k-1)^2 / 8z^2) final double e = Math.exp(lne * j2); k0 += e; k1 += (a1 * j2 - z2) * e; k2 += (a2 + b2 * j2 + c2 * j4) * e; k3 += (a3 * j6 + b3 * j4 + c3 * j2 + d3) * e; } k0 *= ROOT_TWO_PI / z; // Factors are halved as the sum is for k in -inf to +inf k1 *= ROOT_HALF_PI / (3 * z4); k2 *= ROOT_HALF_PI / (36 * z7); k3 *= ROOT_HALF_PI / (3240 * z10); // Compute additional K2,K3 terms double k2b = 0; double k3b = 0; // -pi^2 / (2z^2) lne *= 4; final double a3b = 3 * PI2 * z2; // Iterate for j=1, 2, ... // Note: Here max = sqrt(1 - FOUR_A z^2 / (4 pi^2)). // This is marginally smaller so we reuse the same value. for (int j = max; j > 0; j--) { final double j2 = (double) j * j; final double j4 = Math.pow(j, 4); // exp(-pi^2 * k^2 / 2z^2) final double e = Math.exp(lne * j2); k2b += PI2 * j2 * e; k3b += (-PI4 * j4 + a3b * j2) * e; } // Factors are halved as the sum is for k in -inf to +inf k2b *= ROOT_HALF_PI / (18 * z3); k3b *= ROOT_HALF_PI / (108 * z6); // Series: K0(z) + K1(z)/n^0.5 + K2(z)/n + K3(z)/n^1.5 + O(1/n^2) k1 /= rootN; k2 /= n; k3 /= n * rootN; k2b /= n; k3b /= n * rootN; // Return (1 - CDF) with an extended precision sum in order of descending magnitude return clipProbability(Sum.of(1, -k0, -k1, -k2, -k3, +k2b, -k3b).getAsDouble()); } } /** * Computes the complementary probability {@code P[D_n^+ >= x]} for the one-sided * one-sample Kolmogorov-Smirnov distribution. * *

     * D_n^+ = sup_x {CDF_n(x) - F(x)}
     * 
* *

where {@code n} is the sample size; {@code CDF_n(x)} is an empirical * cumulative distribution function; and {@code F(x)} is the expected * distribution. The computation uses Smirnov's stable formula: * *

     *                   floor(n(1-x)) (n) ( j     ) (j-1)  (         j ) (n-j)
     * P[D_n^+ >= x] = x     Sum       ( ) ( - + x )        ( 1 - x - - )
     *                       j=0       (j) ( n     )        (         n )
     * 
* *

Computing using logs is not as accurate as direct multiplication when n is large. * However the terms are very large and small. Multiplication uses a scaled representation * with a separate exponent term to support the extreme range. Extended precision * representation of the numbers reduces the error in the power terms. Details in * van Mulbregt (2018). * *

* References: *

    *
  1. * van Mulbregt, P. (2018). * Computing the Cumulative Distribution Function and Quantiles of the One-sided Kolmogorov-Smirnov Statistic * arxiv:1802.06966. *
  2. Magg & Dicaire (1971). * On Kolmogorov-Smirnov Type One-Sample Statistics * Biometrika 58.3 pp. 653–656. *
* * @since 1.1 */ static final class One { /** "Very large" n to use a asymptotic limiting form. * [1] suggests 1e12 but this is reduced to avoid excess * computation time. */ private static final int VERY_LARGE_N = 1000000; /** Maximum number of term for the Smirnov-Dwass algorithm. */ private static final int SD_MAX_TERMS = 3; /** Minimum sample size for the Smirnov-Dwass algorithm. */ private static final int SD_MIN_N = 8; /** Number of bits of precision in the sum of terms Aj. * This does not have to be the full 106 bits of a double-double as the final result * is used as a double. The terms are represented as fractions with an exponent: *
         *  Aj = 2^b * f
         *  f of sum(A) in [0.5, 1)
         *  f of Aj in [0.25, 2]
         * 
*

The terms can be added if their exponents overlap. The bits of precision must * account for the extra range of the fractional part of Aj by 1 bit. Note that * additional bits are added to this dynamically based on the number of terms. */ private static final int SUM_PRECISION_BITS = 53; /** Number of bits of precision in the sum of terms Aj. * For Smirnov-Dwass we use the full 106 bits of a double-double due to the summation * of terms that cancel. Account for the extra range of the fractional part of Aj by 1 bit. */ private static final int SD_SUM_PRECISION_BITS = 107; /** Proxy for the default choice of the scaled power function. * The actual choice is based on the chosen algorithm. */ private static final ScaledPower POWER_DEFAULT = null; /** * Defines a scaled power function. * Package-private to allow the main sf method to be called direct in testing. */ interface ScaledPower { /** * Compute the number {@code x} raised to the power {@code n}. * *

The value is returned as fractional {@code f} and integral * {@code 2^exp} components. *

             * (x+xx)^n = (f+ff) * 2^exp
             * 
* * @param x x. * @param n Power. * @param exp Result power of two scale factor (integral exponent). * @return Fraction part. * @see DD#frexp(int[]) * @see DD#pow(int, long[]) * @see DDMath#pow(DD, int, long[]) */ DD pow(DD x, int n, long[] exp); } /** No instances. */ private One() {} /** * Calculates complementary probability {@code P[D_n^+ >= x]}, or survival * function (SF), for the one-sided one-sample Kolmogorov-Smirnov distribution. * * @param x Statistic. * @param n Sample size (assumed to be positive). * @return \(P(D_n^+ ≥ x)\) */ static double sf(double x, int n) { final double p = sfExact(x, n); if (p >= 0) { return p; } // Note: This is not referring to N = floor(n*x). // Here n is the sample size and a suggested limit 10^12 is noted on pp.15 in [1]. // This uses a lower threshold where the full computation takes ~ 1 second. if (n > VERY_LARGE_N) { return sfAsymptotic(x, n); } return sf(x, n, POWER_DEFAULT); } /** * Calculates exact cases for the complementary probability * {@code P[D_n^+ >= x]} the one-sided one-sample Kolmogorov-Smirnov distribution. * *

Exact cases handle x not in [0, 1]. It is assumed n is positive. * * @param x Statistic. * @param n Sample size (assumed to be positive). * @return \(P(D_n^+ ≥ x)\) */ private static double sfExact(double x, int n) { if (n * x * x >= 372.5 || x >= 1) { // p would underflow, or x is out of the domain return 0; } if (x <= 0) { // edge-of, or out-of, the domain return 1; } if (n == 1) { return x; } // x <= 1/n // [1] Equation (33) final double nx = n * x; if (nx <= 1) { // 1 - x (1+x)^(n-1): here x may be small so use log1p return 1 - x * Math.exp((n - 1) * Math.log1p(x)); } // 1 - 1/n <= x < 1 // [1] Equation (16) if (n - 1 <= nx) { // (1-x)^n: here x > 0.5 and 1-x is exact return Math.pow(1 - x, n); } return -1; } /** * Calculates complementary probability {@code P[D_n^+ >= x]}, or survival * function (SF), for the one-sided one-sample Kolmogorov-Smirnov distribution. * *

Computes the result using the asymptotic formula Eq 5 in [1]. * * @param x Statistic. * @param n Sample size (assumed to be positive). * @return \(P(D_n^+ ≥ x)\) */ private static double sfAsymptotic(double x, int n) { // Magg & Dicaire (1971) limiting form return Math.exp(-Math.pow(6.0 * n * x + 1, 2) / (18.0 * n)); } /** * Calculates complementary probability {@code P[D_n^+ >= x]}, or survival * function (SF), for the one-sided one-sample Kolmogorov-Smirnov distribution. * *

Computes the result using double-double arithmetic. The power function * can use a fast approximation or a full power computation. * *

This function is safe for {@code x > 1/n}. When {@code x} approaches * sub-normal then division or multiplication by x can under/overflow. The * case of {@code x < 1/n} can be computed in {@code sfExact}. * * @param x Statistic (typically in (1/n, 1 - 1/n)). * @param n Sample size (assumed to be positive). * @param power Function to compute the scaled power (can be null). * @return \(P(D_n^+ ≥ x)\) * @see DD#pow(int, long[]) * @see DDMath#pow(DD, int, long[]) */ static double sf(double x, int n, ScaledPower power) { // Compute only the SF using Algorithm 1 pp 12. // Compute: k = floor(n*x), alpha = nx - k; x = (k+alpha)/n with 0 <= alpha < 1 final double[] alpha = {0}; final int k = splitX(n, x, alpha); // Choose the algorithm: // Eq (13) Smirnov/Birnbaum-Tingey; or Smirnov/Dwass Eq (31) // Eq. 13 sums j = 0 : floor( n(1-x) ) = n - 1 - floor(nx) iff alpha != 0; else n - floor(nx) // Eq. 31 sums j = ceil( n(1-x) ) : n = n - floor(nx) // Drop a term term if x = (n-j)/n. Equates to shifting the floor* down and ceil* up: // Eq. 13 N = floor*( n(1-x) ) = n - k - ((alpha!=0) ? 1 : 0) - ((alpha==0) ? 1 : 0) // Eq. 31 N = n - ceil*( n(1-x) ) = k - ((alpha==0) ? 1 : 0) // Where N is the number of terms - 1. This differs from Algorithm 1 by dropping // a SD term when it should be zero (to working precision). final int regN = n - k - 1; final int sdN = k - ((alpha[0] == 0) ? 1 : 0); // SD : Figure 3 (c) (pp. 6) // Terms Aj (j = n -> 0) have alternating signs through the range and may involve // numbers much bigger than 1 causing cancellation; magnitudes increase then decrease. // Section 3.3: Extra digits of precision required // grows like Order(sqrt(n)). E.g. sf=0.7 (x ~ 0.4/sqrt(n)) loses 8 digits. // // Regular : Figure 3 (a, b) // Terms Aj can have similar magnitude through the range; when x >= 1/sqrt(n) // the final few terms can be magnitudes smaller and could be ignored. // Section 3.4: As x increases the magnitude of terms becomes more peaked, // centred at j = (n-nx)/2, i.e. 50% of the terms. // // As n -> inf the sf for x = k/n agrees with the asymptote Eq 5 in log2(n) bits. // // Figure 4 has lines at x = 1/n and x = 3/sqrt(n). // Point between is approximately x = 4/n, i.e. nx < 4 : k <= 3. // If faster when x < 0.5 and requiring nx ~ 4 then requires n >= 8. // // Note: If SD accuracy scales with sqrt(n) then we could use 1 / sqrt(n). // That threshold is always above 4 / n when n is 16 (4/n = 1/sqrt(n) : n = 4^2). // So the current thresholds are conservative. boolean sd = false; if (sdN < regN) { // Here x < 0.5 and SD has fewer terms // Always choose when we only have one additional term (i.e x < 2/n) sd = sdN <= 1; // Otherwise when x < 4 / n sd |= sdN <= SD_MAX_TERMS && n >= SD_MIN_N; } final int maxN = sd ? sdN : regN; // Note: if N > "very large" use the asymptotic approximation. // Currently this check is done on n (sample size) in the calling function. // This provides a monotonic p-value for all x with the same n. // Configure the algorithm. // The error of double-double addition and multiplication is low (< 2^-102). // The error in Aj is mainly from the power function. // fastPow error is around 2^-52, pow error is ~ 2^-70 or lower. // Smirnoff-Dwass has a sum of terms that cancel and requires higher precision. // The power can optionally be specified. final ScaledPower fpow; if (power == POWER_DEFAULT) { // SD has only a few terms. Use a high accuracy power. fpow = sd ? DDMath::pow : DD::pow; } else { fpow = power; } // For the regular summation we must sum at least 50% of the terms. The number // of required bits to sum remaining terms of the same magnitude is log2(N/2). // These guards bits are conservative and > ~99% of terms are typically used. final int sumBits = sd ? SD_SUM_PRECISION_BITS : SUM_PRECISION_BITS + log2(maxN >> 1); // Working variable for the exponent of scaled values final int[] ie = {0}; final long[] le = {0}; // The terms Aj may over/underflow. // This is handled by maintaining the sum(Aj) using a fractional representation. // sum(Aj) maintained as 2^e * f with f in [0.5, 1) DD sum; long esum; // Compute A0 if (sd) { // A0 = (1+x)^(n-1) sum = fpow.pow(DD.ofSum(1, x), n - 1, le); esum = le[0]; } else { // A0 = (1-x)^n / x sum = fpow.pow(DD.ofDifference(1, x), n, le); esum = le[0]; // x in (1/n, 1 - 1/n) so the divide of the fraction is safe sum = sum.divide(x).frexp(ie); esum += ie[0]; } // Binomial coefficient c(n, j) maintained as 2^e * f with f in [1, 2) // This value is integral but maintained to limited precision DD c = DD.ONE; long ec = 0; for (int i = 1; i <= maxN; i++) { // c(n, j) = c(n, j-1) * (n-j+1) / j c = c.multiply(DD.fromQuotient(n - i + 1, i)); // Here we maintain c in [1, 2) to restrict the scaled Aj term to [0.25, 2]. final int b = Math.getExponent(c.hi()); if (b != 0) { c = c.scalb(-b); ec += b; } // Compute Aj final int j = sd ? n - i : i; // Algorithm 4 pp. 27 // S = ((j/n) + x)^(j-1) // T = ((n-j)/n - x)^(n-j) final DD s = fpow.pow(DD.fromQuotient(j, n).add(x), j - 1, le); final long es = le[0]; final DD t = fpow.pow(DD.fromQuotient(n - j, n).subtract(x), n - j, le); final long et = le[0]; // Aj = C(n, j) * T * S // = 2^e * [1, 2] * [0.5, 1] * [0.5, 1] // = 2^e * [0.25, 2] final long eaj = ec + es + et; // Only compute and add to the sum when the exponents overlap by n-bits. if (eaj > esum - sumBits) { DD aj = c.multiply(t).multiply(s); // Scaling must offset by the scale of the sum aj = aj.scalb((int) (eaj - esum)); sum = sum.add(aj); } else { // Terms are expected to increase in magnitude then reduce. // Here the terms are insignificant and we can stop. // Effectively Aj -> eps * sum, and most of the computation is done. break; } // Re-scale the sum sum = sum.frexp(ie); esum += ie[0]; } // p = x * sum(Ai). Since the sum is normalised // this is safe as long as x does not approach a sub-normal. // Typically x in (1/n, 1 - 1/n). sum = sum.multiply(x); // Rescale the result sum = sum.scalb((int) esum); if (sd) { // SF = 1 - CDF sum = sum.negate().add(1); } return clipProbability(sum.doubleValue()); } /** * Compute exactly {@code x = (k + alpha) / n} with {@code k} an integer and * {@code alpha in [0, 1)}. Note that {@code k ~ floor(nx)} but may be rounded up * if {@code alpha -> 1} within working precision. * *

This computation is a significant source of increased error if performed in * 64-bit arithmetic. Although the value alpha is only used for the PDF computation * a value of {@code alpha == 0} indicates the final term of the SF summation can be * dropped due to the cancellation of a power term {@code (x + j/n)} to zero with * {@code x = (n-j)/n}. That is if {@code alpha == 0} then x is the fraction {@code k/n} * and one Aj term is zero. * * @param n Sample size. * @param x Statistic. * @param alpha Output alpha. * @return k */ static int splitX(int n, double x, double[] alpha) { // Described on page 14 in van Mulbregt [1]. // nx = U+V (exact) DD z = DD.ofProduct(n, x); // Integer part of nx is *almost* the integer part of U. // Compute k = floor((U,V)) (changed from the listing of floor(U)). int k = (int) z.floor().hi(); // nx = k + ((U - k) + V) = k + (U1 + V1) // alpha = (U1, V1) = z - k z = z.subtract(k); // alpha is in [0, 1) in double-double precision. // Ensure the high part is in [0, 1) (i.e. in double precision). if (z.hi() == 1) { // Here alpha is ~ 1.0-eps. // This occurs when x ~ j/n and n is large. k += 1; alpha[0] = 0; } else { alpha[0] = z.hi(); } return k; } /** * Returns {@code floor(log2(n))}. * * @param n Value. * @return approximate log2(n) */ private static int log2(int n) { return 31 - Integer.numberOfLeadingZeros(n); } } /** * Computes {@code P(sqrt(n) D_n > x)}, the limiting form for the distribution of * Kolmogorov's D_n as described in Simard and L’Ecuyer (2011) (Eq. 5, or K0 Eq. 6). * *

Computes \( 2 \sum_{i=1}^\infty (-1)^(i-1) e^{-2 i^2 x^2} \), or * \( 1 - (\sqrt{2 \pi} / x) * \sum_{i=1}^\infty { e^{-(2i-1)^2 \pi^2 / (8x^2) } } \) * when x is small. * *

Note: This computes the upper Kolmogorov sum. * * @param x Argument x = sqrt(n) * d * @return Upper Kolmogorov sum evaluated at x */ static double ksSum(double x) { // Switch computation when p ~ 0.5 if (x < X_KS_HALF) { // When x -> 0 the result is 1 if (x < X_KS_ONE) { return 1; } // t = exp(-pi^2/8x^2) // p = 1 - sqrt(2pi)/x * (t + t^9 + t^25 + t^49 + t^81 + ...) // = 1 - sqrt(2pi)/x * t * (1 + t^8 + t^24 + t^48 + t^80 + ...) final double logt = -PI2 / (8 * x * x); final double t = Math.exp(logt); final double s = ROOT_TWO_PI / x; final double t8 = Math.pow(t, 8); if (t8 < EPS) { // Cannot compute 1 + t^8. // 1 - sqrt(2pi)/x * exp(-pi^2/8x^2) // 1 - exp(log(sqrt(2pi)/x) - pi^2/8x^2) return -Math.expm1(Math.log(s) + logt); } // sum = t^((2i-1)^2 - 1), i=1, 2, 3, 4, 5, ... // = 1 + t^8 + t^24 + t^48 + t^80 + ... // With x = 0.82757... the smallest terms cannot be added when i==5 // i.e. t^48 + t^80 == t^48 // sum = 1 + (t^8 * (1 + t^16 * (1 + t^24))) final double sum = 1 + (t8 * (1 + t8 * t8 * (1 + t8 * t8 * t8))); return 1 - s * t * sum; } // t = exp(-2 x^2) // p = 2 * (t - t^4 + t^9 - t^16 + ...) // sum = -1^(i-1) t^(i^2), i=i, 2, 3, ... // Sum of alternating terms of reducing magnitude: // Will converge when exp(-2x^2) * eps >= exp(-2x^2)^(i^2) // When x = 0.82757... this requires max i==5 // i.e. t * eps >= t^36 (i=6) final double t = Math.exp(-2 * x * x); // (t - t^4 + t^9 - t^16 + t^25) // t * (1 - t^3 * (1 - t^5 * (1 - t^7 * (1 - t^9)))) final double t2 = t * t; final double t3 = t * t * t; final double t4 = t2 * t2; final double sum = t * (1 - t3 * (1 - t2 * t3 * (1 - t3 * t4 * (1 - t2 * t3 * t4)))); return clipProbability(2 * sum); } /** * Clip the probability to the range [0, 1]. * * @param p Probability. * @return p in [0, 1] */ static double clipProbability(double p) { return Math.min(1, Math.max(0, p)); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy