org.apache.commons.text.similarity.JaroWinklerSimilarity Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-text Show documentation
Show all versions of commons-text Show documentation
Apache Commons Text is a library focused on algorithms working on strings.
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.text.similarity;
import java.util.Arrays;
import java.util.Objects;
/**
* A similarity algorithm indicating the percentage of matched characters between two character sequences.
*
*
* The Jaro measure is the weighted sum of percentage of matched characters from each file and transposed characters. Winkler increased this measure for
* matching initial characters.
*
*
* This implementation is based on the Jaro Winkler similarity algorithm from
* https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance.
*
*
* This code has been adapted from Apache Commons Lang 3.3.
*
*
* @since 1.7
*/
public class JaroWinklerSimilarity implements SimilarityScore {
/**
* Singleton instance.
*/
static final JaroWinklerSimilarity INSTANCE = new JaroWinklerSimilarity();
/**
* Computes the Jaro-Winkler string matches, half transpositions, prefix array.
*
* @param first the first input to be matched.
* @param second the second input to be matched.
* @return mtp array containing: matches, half transpositions, and prefix.
*/
protected static int[] matches(final CharSequence first, final CharSequence second) {
return matches(SimilarityInput.input(first), SimilarityInput.input(second));
}
/**
* Computes the Jaro-Winkler string matches, half transpositions, prefix array.
*
* @param The type of similarity score unit.
* @param first the first input to be matched.
* @param second the second input to be matched.
* @return mtp array containing: matches, half transpositions, and prefix.
* @since 1.13.0
*/
protected static int[] matches(final SimilarityInput first, final SimilarityInput second) {
final SimilarityInput max;
final SimilarityInput min;
if (first.length() > second.length()) {
max = first;
min = second;
} else {
max = second;
min = first;
}
final int range = Math.max(max.length() / 2 - 1, 0);
final int[] matchIndexes = new int[min.length()];
Arrays.fill(matchIndexes, -1);
final boolean[] matchFlags = new boolean[max.length()];
int matches = 0;
for (int mi = 0; mi < min.length(); mi++) {
final E c1 = min.at(mi);
for (int xi = Math.max(mi - range, 0), xn = Math.min(mi + range + 1, max.length()); xi < xn; xi++) {
if (!matchFlags[xi] && c1.equals(max.at(xi))) {
matchIndexes[mi] = xi;
matchFlags[xi] = true;
matches++;
break;
}
}
}
final Object[] ms1 = new Object[matches];
final Object[] ms2 = new Object[matches];
for (int i = 0, si = 0; i < min.length(); i++) {
if (matchIndexes[i] != -1) {
ms1[si] = min.at(i);
si++;
}
}
for (int i = 0, si = 0; i < max.length(); i++) {
if (matchFlags[i]) {
ms2[si] = max.at(i);
si++;
}
}
int halfTranspositions = 0;
for (int mi = 0; mi < ms1.length; mi++) {
if (!ms1[mi].equals(ms2[mi])) {
halfTranspositions++;
}
}
int prefix = 0;
for (int mi = 0; mi < Math.min(4, min.length()); mi++) {
if (!first.at(mi).equals(second.at(mi))) {
break;
}
prefix++;
}
return new int[] { matches, halfTranspositions, prefix };
}
/**
* Computes the Jaro Winkler Similarity between two character sequences.
*
*
* sim.apply(null, null) = IllegalArgumentException
* sim.apply("foo", null) = IllegalArgumentException
* sim.apply(null, "foo") = IllegalArgumentException
* sim.apply("", "") = 1.0
* sim.apply("foo", "foo") = 1.0
* sim.apply("foo", "foo ") = 0.94
* sim.apply("foo", "foo ") = 0.91
* sim.apply("foo", " foo ") = 0.87
* sim.apply("foo", " foo") = 0.51
* sim.apply("", "a") = 0.0
* sim.apply("aaapppp", "") = 0.0
* sim.apply("frog", "fog") = 0.93
* sim.apply("fly", "ant") = 0.0
* sim.apply("elephant", "hippo") = 0.44
* sim.apply("hippo", "elephant") = 0.44
* sim.apply("hippo", "zzzzzzzz") = 0.0
* sim.apply("hello", "hallo") = 0.88
* sim.apply("ABC Corporation", "ABC Corp") = 0.91
* sim.apply("D N H Enterprises Inc", "D & H Enterprises, Inc.") = 0.95
* sim.apply("My Gym Children's Fitness Center", "My Gym. Childrens Fitness") = 0.92
* sim.apply("PENNSYLVANIA", "PENNCISYLVNIA") = 0.88
*
*
* @param left the first input, must not be null.
* @param right the second input, must not be null.
* @return result similarity.
* @throws IllegalArgumentException if either CharSequence input is {@code null}.
*/
@Override
public Double apply(final CharSequence left, final CharSequence right) {
return apply(SimilarityInput.input(left), SimilarityInput.input(right));
}
/**
* Computes the Jaro Winkler Similarity between two character sequences.
*
*
* sim.apply(null, null) = IllegalArgumentException
* sim.apply("foo", null) = IllegalArgumentException
* sim.apply(null, "foo") = IllegalArgumentException
* sim.apply("", "") = 1.0
* sim.apply("foo", "foo") = 1.0
* sim.apply("foo", "foo ") = 0.94
* sim.apply("foo", "foo ") = 0.91
* sim.apply("foo", " foo ") = 0.87
* sim.apply("foo", " foo") = 0.51
* sim.apply("", "a") = 0.0
* sim.apply("aaapppp", "") = 0.0
* sim.apply("frog", "fog") = 0.93
* sim.apply("fly", "ant") = 0.0
* sim.apply("elephant", "hippo") = 0.44
* sim.apply("hippo", "elephant") = 0.44
* sim.apply("hippo", "zzzzzzzz") = 0.0
* sim.apply("hello", "hallo") = 0.88
* sim.apply("ABC Corporation", "ABC Corp") = 0.91
* sim.apply("D N H Enterprises Inc", "D & H Enterprises, Inc.") = 0.95
* sim.apply("My Gym Children's Fitness Center", "My Gym. Childrens Fitness") = 0.92
* sim.apply("PENNSYLVANIA", "PENNCISYLVNIA") = 0.88
*
*
* @param The type of similarity score unit.
* @param left the first input, must not be null.
* @param right the second input, must not be null.
* @return result similarity.
* @throws IllegalArgumentException if either CharSequence input is {@code null}.
* @since 1.13.0
*/
public Double apply(final SimilarityInput left, final SimilarityInput right) {
final double defaultScalingFactor = 0.1;
if (left == null || right == null) {
throw new IllegalArgumentException("CharSequences must not be null");
}
if (Objects.equals(left, right)) {
return 1d;
}
final int[] mtp = matches(left, right);
final double m = mtp[0];
if (m == 0) {
return 0d;
}
final double j = (m / left.length() + m / right.length() + (m - (double) mtp[1] / 2) / m) / 3;
return j < 0.7d ? j : j + defaultScalingFactor * mtp[2] * (1d - j);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy