All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.text.similarity.LevenshteinDistance Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.text.similarity;

import java.util.Arrays;

/**
 * An algorithm for measuring the difference between two character sequences.
 *
 * 

* This is the number of changes needed to change one sequence into another, where each change is a single character modification (deletion, insertion or * substitution). *

*

* This code has been adapted from Apache Commons Lang 3.3. *

* * @since 1.0 */ public class LevenshteinDistance implements EditDistance { /** * Singleton instance. */ private static final LevenshteinDistance INSTANCE = new LevenshteinDistance(); /** * Gets the default instance. * * @return The default instance */ public static LevenshteinDistance getDefaultInstance() { return INSTANCE; } /** * Find the Levenshtein distance between two CharSequences if it's less than or equal to a given threshold. * *

* This implementation follows from Algorithms on Strings, Trees and Sequences by Dan Gusfield and Chas Emerick's implementation of the Levenshtein distance * algorithm from http://www.merriampark.com/ld.htm *

* *
     * limitedCompare(null, *, *)             = IllegalArgumentException
     * limitedCompare(*, null, *)             = IllegalArgumentException
     * limitedCompare(*, *, -1)               = IllegalArgumentException
     * limitedCompare("","", 0)               = 0
     * limitedCompare("aaapppp", "", 8)       = 7
     * limitedCompare("aaapppp", "", 7)       = 7
     * limitedCompare("aaapppp", "", 6))      = -1
     * limitedCompare("elephant", "hippo", 7) = 7
     * limitedCompare("elephant", "hippo", 6) = -1
     * limitedCompare("hippo", "elephant", 7) = 7
     * limitedCompare("hippo", "elephant", 6) = -1
     * 
* * @param left the first SimilarityInput, must not be null * @param right the second SimilarityInput, must not be null * @param threshold the target threshold, must not be negative * @return result distance, or -1 */ private static int limitedCompare(SimilarityInput left, SimilarityInput right, final int threshold) { // NOPMD if (left == null || right == null) { throw new IllegalArgumentException("CharSequences must not be null"); } if (threshold < 0) { throw new IllegalArgumentException("Threshold must not be negative"); } /* * This implementation only computes the distance if it's less than or equal to the threshold value, returning -1 if it's greater. The advantage is * performance: unbounded distance is O(nm), but a bound of k allows us to reduce it to O(km) time by only computing a diagonal stripe of width 2k + 1 * of the cost table. It is also possible to use this to compute the unbounded Levenshtein distance by starting the threshold at 1 and doubling each * time until the distance is found; this is O(dm), where d is the distance. * * One subtlety comes from needing to ignore entries on the border of our stripe eg. p[] = |#|#|#|* d[] = *|#|#|#| We must ignore the entry to the left * of the leftmost member We must ignore the entry above the rightmost member * * Another subtlety comes from our stripe running off the matrix if the strings aren't of the same size. Since string s is always swapped to be the * shorter of the two, the stripe will always run off to the upper right instead of the lower left of the matrix. * * As a concrete example, suppose s is of length 5, t is of length 7, and our threshold is 1. In this case we're going to walk a stripe of length 3. The * matrix would look like so: * *
 1 2 3 4 5 1 |#|#| | | | 2 |#|#|#| | | 3 | |#|#|#| | 4 | | |#|#|#| 5 | | | |#|#| 6 | | | | |#| 7 | | | | | | 
* * Note how the stripe leads off the table as there is no possible way to turn a string of length 5 into one of length 7 in edit distance of 1. * * Additionally, this implementation decreases memory usage by using two single-dimensional arrays and swapping them back and forth instead of * allocating an entire n by m matrix. This requires a few minor changes, such as immediately returning when it's detected that the stripe has run off * the matrix and initially filling the arrays with large values so that entries we don't compute are ignored. * * See Algorithms on Strings, Trees and Sequences by Dan Gusfield for some discussion. */ int n = left.length(); // length of left int m = right.length(); // length of right // if one string is empty, the edit distance is necessarily the length // of the other if (n == 0) { return m <= threshold ? m : -1; } if (m == 0) { return n <= threshold ? n : -1; } if (n > m) { // swap the two strings to consume less memory final SimilarityInput tmp = left; left = right; right = tmp; n = m; m = right.length(); } // the edit distance cannot be less than the length difference if (m - n > threshold) { return -1; } int[] p = new int[n + 1]; // 'previous' cost array, horizontally int[] d = new int[n + 1]; // cost array, horizontally int[] tempD; // placeholder to assist in swapping p and d // fill in starting table values final int boundary = Math.min(n, threshold) + 1; for (int i = 0; i < boundary; i++) { p[i] = i; } // these fills ensure that the value above the rightmost entry of our // stripe will be ignored in following loop iterations Arrays.fill(p, boundary, p.length, Integer.MAX_VALUE); Arrays.fill(d, Integer.MAX_VALUE); // iterates through t for (int j = 1; j <= m; j++) { final E rightJ = right.at(j - 1); // jth character of right d[0] = j; // compute stripe indices, constrain to array size final int min = Math.max(1, j - threshold); final int max = j > Integer.MAX_VALUE - threshold ? n : Math.min(n, j + threshold); // ignore entry left of leftmost if (min > 1) { d[min - 1] = Integer.MAX_VALUE; } int lowerBound = Integer.MAX_VALUE; // iterates through [min, max] in s for (int i = min; i <= max; i++) { if (left.at(i - 1).equals(rightJ)) { // diagonally left and up d[i] = p[i - 1]; } else { // 1 + minimum of cell to the left, to the top, diagonally // left and up d[i] = 1 + Math.min(Math.min(d[i - 1], p[i]), p[i - 1]); } lowerBound = Math.min(lowerBound, d[i]); } // if the lower bound is greater than the threshold, then exit early if (lowerBound > threshold) { return -1; } // copy current distance counts to 'previous row' distance counts tempD = p; p = d; d = tempD; } // if p[n] is greater than the threshold, there's no guarantee on it // being the correct // distance if (p[n] <= threshold) { return p[n]; } return -1; } /** * Finds the Levenshtein distance between two Strings. * *

* A higher score indicates a greater distance. *

* *

* The previous implementation of the Levenshtein distance algorithm was from * * https://web.archive.org/web/20120526085419/http://www.merriampark.com/ldjava.htm *

* *

* This implementation only need one single-dimensional arrays of length s.length() + 1 *

* *
     * unlimitedCompare(null, *)             = IllegalArgumentException
     * unlimitedCompare(*, null)             = IllegalArgumentException
     * unlimitedCompare("","")               = 0
     * unlimitedCompare("","a")              = 1
     * unlimitedCompare("aaapppp", "")       = 7
     * unlimitedCompare("frog", "fog")       = 1
     * unlimitedCompare("fly", "ant")        = 3
     * unlimitedCompare("elephant", "hippo") = 7
     * unlimitedCompare("hippo", "elephant") = 7
     * unlimitedCompare("hippo", "zzzzzzzz") = 8
     * unlimitedCompare("hello", "hallo")    = 1
     * 
* * @param left the first CharSequence, must not be null * @param right the second CharSequence, must not be null * @return result distance, or -1 * @throws IllegalArgumentException if either CharSequence input is {@code null} */ private static int unlimitedCompare(SimilarityInput left, SimilarityInput right) { if (left == null || right == null) { throw new IllegalArgumentException("CharSequences must not be null"); } /* * This implementation use two variable to record the previous cost counts, So this implementation use less memory than previous impl. */ int n = left.length(); // length of left int m = right.length(); // length of right if (n == 0) { return m; } if (m == 0) { return n; } if (n > m) { // swap the input strings to consume less memory final SimilarityInput tmp = left; left = right; right = tmp; n = m; m = right.length(); } final int[] p = new int[n + 1]; // indexes into strings left and right int i; // iterates through left int j; // iterates through right int upperLeft; int upper; E rightJ; // jth character of right int cost; // cost for (i = 0; i <= n; i++) { p[i] = i; } for (j = 1; j <= m; j++) { upperLeft = p[0]; rightJ = right.at(j - 1); p[0] = j; for (i = 1; i <= n; i++) { upper = p[i]; cost = left.at(i - 1).equals(rightJ) ? 0 : 1; // minimum of cell to the left+1, to the top+1, diagonally left and up +cost p[i] = Math.min(Math.min(p[i - 1] + 1, p[i] + 1), upperLeft + cost); upperLeft = upper; } } return p[n]; } /** * Threshold. */ private final Integer threshold; /** * This returns the default instance that uses a version of the algorithm that does not use a threshold parameter. * * @see LevenshteinDistance#getDefaultInstance() * @deprecated Use {@link #getDefaultInstance()}. */ @Deprecated public LevenshteinDistance() { this(null); } /** * If the threshold is not null, distance calculations will be limited to a maximum length. If the threshold is null, the unlimited version of the algorithm * will be used. * * @param threshold If this is null then distances calculations will not be limited. This may not be negative. */ public LevenshteinDistance(final Integer threshold) { if (threshold != null && threshold < 0) { throw new IllegalArgumentException("Threshold must not be negative"); } this.threshold = threshold; } /** * Computes the Levenshtein distance between two Strings. * *

* A higher score indicates a greater distance. *

* *

* The previous implementation of the Levenshtein distance algorithm was from * http://www.merriampark.com/ld.htm *

* *

* Chas Emerick has written an implementation in Java, which avoids an OutOfMemoryError which can occur when my Java implementation is used with very large * strings.
* This implementation of the Levenshtein distance algorithm is from * http://www.merriampark.com/ldjava.htm *

* *
     * distance.apply(null, *)             = IllegalArgumentException
     * distance.apply(*, null)             = IllegalArgumentException
     * distance.apply("","")               = 0
     * distance.apply("","a")              = 1
     * distance.apply("aaapppp", "")       = 7
     * distance.apply("frog", "fog")       = 1
     * distance.apply("fly", "ant")        = 3
     * distance.apply("elephant", "hippo") = 7
     * distance.apply("hippo", "elephant") = 7
     * distance.apply("hippo", "zzzzzzzz") = 8
     * distance.apply("hello", "hallo")    = 1
     * 
* * @param left the first input, must not be null * @param right the second input, must not be null * @return result distance, or -1 * @throws IllegalArgumentException if either String input {@code null} */ @Override public Integer apply(final CharSequence left, final CharSequence right) { return apply(SimilarityInput.input(left), SimilarityInput.input(right)); } /** * Computes the Levenshtein distance between two inputs. * *

* A higher score indicates a greater distance. *

* *
     * distance.apply(null, *)             = IllegalArgumentException
     * distance.apply(*, null)             = IllegalArgumentException
     * distance.apply("","")               = 0
     * distance.apply("","a")              = 1
     * distance.apply("aaapppp", "")       = 7
     * distance.apply("frog", "fog")       = 1
     * distance.apply("fly", "ant")        = 3
     * distance.apply("elephant", "hippo") = 7
     * distance.apply("hippo", "elephant") = 7
     * distance.apply("hippo", "zzzzzzzz") = 8
     * distance.apply("hello", "hallo")    = 1
     * 
* * @param The type of similarity score unit. * @param left the first input, must not be null. * @param right the second input, must not be null. * @return result distance, or -1. * @throws IllegalArgumentException if either String input {@code null}. * @since 1.13.0 */ public Integer apply(final SimilarityInput left, final SimilarityInput right) { if (threshold != null) { return limitedCompare(left, right, threshold); } return unlimitedCompare(left, right); } /** * Gets the distance threshold. * * @return The distance threshold */ public Integer getThreshold() { return threshold; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy