org.apache.cxf.workqueue.AutomaticWorkQueueImpl Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.cxf.workqueue;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.Delayed;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.ReentrantLock;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.management.JMException;
import org.apache.cxf.common.logging.LogUtils;
import org.apache.cxf.management.InstrumentationManager;
public class AutomaticWorkQueueImpl extends ThreadPoolExecutor implements AutomaticWorkQueue {
static final int DEFAULT_MAX_QUEUE_SIZE = 256;
private static final Logger LOG =
LogUtils.getL7dLogger(AutomaticWorkQueueImpl.class);
int maxQueueSize;
DelayQueue delayQueue = new DelayQueue();
WatchDog watchDog = new WatchDog(delayQueue);
WorkQueueManagerImpl manager;
String name = "default";
final int corePoolSize;
final int maxPoolSize;
final ReentrantLock mainLock;
public AutomaticWorkQueueImpl() {
this(DEFAULT_MAX_QUEUE_SIZE);
}
public AutomaticWorkQueueImpl(String name) {
this(DEFAULT_MAX_QUEUE_SIZE, name);
}
public AutomaticWorkQueueImpl(int max) {
this(max, "default");
}
public AutomaticWorkQueueImpl(int max, String name) {
this(max,
0,
25,
5,
2 * 60 * 1000L,
name);
}
public AutomaticWorkQueueImpl(int mqs,
int initialThreads,
int highWaterMark,
int lowWaterMark,
long dequeueTimeout) {
this(mqs, initialThreads, highWaterMark, lowWaterMark, dequeueTimeout, "default");
}
public AutomaticWorkQueueImpl(int mqs,
int initialThreads,
int highWaterMark,
int lowWaterMark,
long dequeueTimeout,
String name) {
super(-1 == lowWaterMark ? Integer.MAX_VALUE : lowWaterMark,
-1 == highWaterMark ? Integer.MAX_VALUE : highWaterMark,
TimeUnit.MILLISECONDS.toMillis(dequeueTimeout), TimeUnit.MILLISECONDS,
mqs == -1 ? new LinkedBlockingQueue(DEFAULT_MAX_QUEUE_SIZE)
: new LinkedBlockingQueue(mqs),
createThreadFactory(name));
maxQueueSize = mqs == -1 ? DEFAULT_MAX_QUEUE_SIZE : mqs;
lowWaterMark = -1 == lowWaterMark ? Integer.MAX_VALUE : lowWaterMark;
highWaterMark = -1 == highWaterMark ? Integer.MAX_VALUE : highWaterMark;
StringBuilder buf = new StringBuilder();
buf.append("Constructing automatic work queue with:\n");
buf.append("max queue size: " + maxQueueSize + "\n");
buf.append("initialThreads: " + initialThreads + "\n");
buf.append("lowWaterMark: " + lowWaterMark + "\n");
buf.append("highWaterMark: " + highWaterMark + "\n");
LOG.fine(buf.toString());
if (initialThreads > highWaterMark) {
initialThreads = highWaterMark;
}
// as we cannot prestart more core than corePoolSize initial threads, we temporarily
// change the corePoolSize to the number of initial threads
// this is important as otherwise these threads will be created only when the queue has filled up,
// potentially causing problems with starting up under heavy load
if (initialThreads < Integer.MAX_VALUE && initialThreads > 0) {
setCorePoolSize(initialThreads);
int started = prestartAllCoreThreads();
if (started < initialThreads) {
LOG.log(Level.WARNING, "THREAD_START_FAILURE_MSG", new Object[] {started, initialThreads});
}
setCorePoolSize(lowWaterMark);
}
// start the watch dog thread
watchDog.setDaemon(true);
watchDog.start();
corePoolSize = this.getCorePoolSize();
maxPoolSize = this.getMaximumPoolSize();
ReentrantLock l = null;
try {
Field f = ThreadPoolExecutor.class.getDeclaredField("mainLock");
f.setAccessible(true);
l = (ReentrantLock)f.get(this);
} catch (Throwable t) {
l = new ReentrantLock();
}
mainLock = l;
}
private static ThreadFactory createThreadFactory(final String name) {
ThreadGroup group;
try {
//Try and find the highest level ThreadGroup that we're allowed to use.
//That SHOULD allow the default classloader and thread locals and such
//to be the least likely to cause issues down the road.
group = AccessController.doPrivileged(
new PrivilegedAction() {
public ThreadGroup run() {
ThreadGroup group = Thread.currentThread().getThreadGroup();
ThreadGroup parent = group;
try {
while (parent != null) {
group = parent;
parent = parent.getParent();
}
} catch (SecurityException se) {
//ignore - if we get here, the "group" is as high as
//the security manager will allow us to go. Use that one.
}
return new ThreadGroup(group, name + "-workqueue");
}
}
);
} catch (SecurityException e) {
group = new ThreadGroup(name + "-workqueue");
}
return new AWQThreadFactory(group, name);
}
static class DelayedTaskWrapper implements Delayed, Runnable {
long trigger;
Runnable work;
DelayedTaskWrapper(Runnable work, long delay) {
this.work = work;
trigger = System.currentTimeMillis() + delay;
}
public long getDelay(TimeUnit unit) {
long n = trigger - System.currentTimeMillis();
return unit.convert(n, TimeUnit.MILLISECONDS);
}
public int compareTo(Delayed delayed) {
long other = ((DelayedTaskWrapper)delayed).trigger;
int returnValue;
if (this.trigger < other) {
returnValue = -1;
} else if (this.trigger > other) {
returnValue = 1;
} else {
returnValue = 0;
}
return returnValue;
}
public void run() {
work.run();
}
}
class WatchDog extends Thread {
DelayQueue delayQueue;
AtomicBoolean shutdown = new AtomicBoolean(false);
WatchDog(DelayQueue queue) {
delayQueue = queue;
}
public void shutdown() {
shutdown.set(true);
// to exit the waiting thread
interrupt();
}
public void run() {
DelayedTaskWrapper task;
try {
while (!shutdown.get()) {
task = delayQueue.take();
if (task != null) {
try {
execute(task);
} catch (Exception ex) {
LOG.warning("Executing the task from DelayQueue with exception: " + ex);
}
}
}
} catch (InterruptedException e) {
if (LOG.isLoggable(Level.FINE)) {
LOG.finer("The DelayQueue watchdog Task is stopping");
}
}
}
}
static class AWQThreadFactory implements ThreadFactory {
final AtomicInteger threadNumber = new AtomicInteger(1);
ThreadGroup group;
String name;
ClassLoader loader;
AWQThreadFactory(ThreadGroup gp, String nm) {
group = gp;
name = nm;
//force the loader to be the loader of CXF, not the application loader
loader = AutomaticWorkQueueImpl.class.getClassLoader();
}
public Thread newThread(Runnable r) {
if (group.isDestroyed()) {
group = new ThreadGroup(group.getParent(), name + "-workqueue");
}
Thread t = new Thread(group,
r,
name + "-workqueue-" + threadNumber.getAndIncrement(),
0);
t.setContextClassLoader(loader);
t.setDaemon(true);
if (t.getPriority() != Thread.NORM_PRIORITY) {
t.setPriority(Thread.NORM_PRIORITY);
}
return t;
}
public void setName(String s) {
name = s;
}
public void shutdown() {
if (!group.isDestroyed()) {
try {
group.destroy();
group.setDaemon(true);
} catch (Throwable t) {
//ignore
}
}
}
}
@Resource(name = "org.apache.cxf.workqueue.WorkQueueManager")
public void setManager(WorkQueueManager mgr) {
manager = (WorkQueueManagerImpl)mgr;
}
public WorkQueueManager getManager() {
return manager;
}
public void setName(String s) {
name = s;
ThreadFactory factory = this.getThreadFactory();
if (factory instanceof AWQThreadFactory) {
((AWQThreadFactory)factory).setName(s);
}
}
public String getName() {
return name;
}
@PostConstruct
public void register() {
if (manager != null) {
manager.addNamedWorkQueue(name, this);
InstrumentationManager imanager = manager.getBus().getExtension(InstrumentationManager.class);
if (null != imanager) {
try {
imanager.register(new WorkQueueImplMBeanWrapper(this));
} catch (JMException jmex) {
LOG.log(Level.WARNING , jmex.getMessage(), jmex);
}
}
}
}
public String toString() {
StringBuilder buf = new StringBuilder();
buf.append(super.toString());
buf.append(" [queue size: ");
buf.append(getSize());
buf.append(", max size: ");
buf.append(maxQueueSize);
buf.append(", threads: ");
buf.append(getPoolSize());
buf.append(", active threads: ");
buf.append(getActiveCount());
buf.append(", low water mark: ");
buf.append(getLowWaterMark());
buf.append(", high water mark: ");
buf.append(getHighWaterMark());
buf.append("]");
return buf.toString();
}
public void execute(final Runnable command) {
//Grab the context classloader of this thread. We'll make sure we use that
//on the thread the runnable actually runs on.
final ClassLoader loader = Thread.currentThread().getContextClassLoader();
Runnable r = new Runnable() {
public void run() {
ClassLoader orig = Thread.currentThread().getContextClassLoader();
try {
Thread.currentThread().setContextClassLoader(loader);
command.run();
} finally {
Thread.currentThread().setContextClassLoader(orig);
}
}
};
//The ThreadPoolExecutor in the JDK doesn't expand the number
//of threads until the queue is full. However, we would
//prefer the number of threads to expand immediately and
//only uses the queue if we've reached the maximum number
//of threads. Thus, we'll set the core size to the max,
//add the runnable, and set back. That will cause the
//threads to be created as needed.
super.execute(r);
if (!getQueue().isEmpty() && this.getPoolSize() < maxPoolSize) {
mainLock.lock();
try {
int ps = this.getPoolSize();
int sz = getQueue().size();
int sz2 = this.getActiveCount();
if ((sz + sz2) > ps) {
Method m = ThreadPoolExecutor.class.getDeclaredMethod("addIfUnderMaximumPoolSize",
Runnable.class);
m.setAccessible(true);
m.invoke(this, new Object[1]);
}
} catch (Exception ex) {
//ignore
} finally {
mainLock.unlock();
}
}
}
// WorkQueue interface
public void execute(Runnable work, long timeout) {
try {
execute(work);
} catch (RejectedExecutionException ree) {
try {
getQueue().offer(work, timeout, TimeUnit.MILLISECONDS);
} catch (InterruptedException ie) {
throw new RejectedExecutionException(ie);
}
}
}
public void schedule(final Runnable work, final long delay) {
delayQueue.put(new DelayedTaskWrapper(work, delay));
}
// AutomaticWorkQueue interface
public void shutdown(boolean processRemainingWorkItems) {
if (!processRemainingWorkItems) {
getQueue().clear();
}
shutdown();
}
@Override
protected void terminated() {
ThreadFactory f = this.getThreadFactory();
if (f instanceof AWQThreadFactory) {
((AWQThreadFactory)f).shutdown();
}
watchDog.shutdown();
}
/**
* Gets the maximum size (capacity) of the backing queue.
* @return the maximum size (capacity) of the backing queue.
*/
public long getMaxSize() {
return maxQueueSize;
}
/**
* Gets the current size of the backing queue.
* @return the current size of the backing queue.
*/
public long getSize() {
return getQueue().size();
}
public boolean isEmpty() {
return getQueue().size() == 0;
}
boolean isFull() {
return getQueue().remainingCapacity() == 0;
}
public int getHighWaterMark() {
int hwm = getMaximumPoolSize();
return hwm == Integer.MAX_VALUE ? -1 : hwm;
}
public int getLowWaterMark() {
int lwm = getCorePoolSize();
return lwm == Integer.MAX_VALUE ? -1 : lwm;
}
public void setHighWaterMark(int hwm) {
setMaximumPoolSize(hwm < 0 ? Integer.MAX_VALUE : hwm);
}
public void setLowWaterMark(int lwm) {
setCorePoolSize(lwm < 0 ? 0 : lwm);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy