org.apache.cxf.workqueue.AutomaticWorkQueueImpl Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cxf-bundle-jaxrs Show documentation
Show all versions of cxf-bundle-jaxrs Show documentation
Apache CXF JAX-RS Bundle Jar
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.cxf.workqueue;
import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.Dictionary;
import java.util.Hashtable;
import java.util.List;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.Delayed;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.ReentrantLock;
import java.util.logging.Level;
import java.util.logging.Logger;
import org.apache.cxf.common.classloader.ClassLoaderUtils;
import org.apache.cxf.common.classloader.ClassLoaderUtils.ClassLoaderHolder;
import org.apache.cxf.common.injection.NoJSR250Annotations;
import org.apache.cxf.common.logging.LogUtils;
import org.apache.cxf.common.util.ReflectionUtil;
@NoJSR250Annotations
public class AutomaticWorkQueueImpl implements AutomaticWorkQueue {
public static final String PROPERTY_NAME = "name";
static final int DEFAULT_MAX_QUEUE_SIZE = 256;
private static final Logger LOG =
LogUtils.getL7dLogger(AutomaticWorkQueueImpl.class);
String name = "default";
int maxQueueSize;
int initialThreads;
int lowWaterMark;
int highWaterMark;
long dequeueTimeout;
volatile int approxThreadCount;
ThreadPoolExecutor executor;
Method addWorkerMethod;
Object addWorkerArgs[];
AWQThreadFactory threadFactory;
ReentrantLock mainLock;
final ReentrantLock addThreadLock = new ReentrantLock();
DelayQueue delayQueue;
WatchDog watchDog;
boolean shared;
int sharedCount;
private List changeListenerList;
public AutomaticWorkQueueImpl() {
this(DEFAULT_MAX_QUEUE_SIZE);
}
public AutomaticWorkQueueImpl(String name) {
this(DEFAULT_MAX_QUEUE_SIZE, name);
}
public AutomaticWorkQueueImpl(int max) {
this(max, "default");
}
public AutomaticWorkQueueImpl(int max, String name) {
this(max,
0,
25,
5,
2 * 60 * 1000L,
name);
}
public AutomaticWorkQueueImpl(int mqs,
int initialThreads,
int highWaterMark,
int lowWaterMark,
long dequeueTimeout) {
this(mqs, initialThreads, highWaterMark, lowWaterMark, dequeueTimeout, "default");
}
public AutomaticWorkQueueImpl(int mqs,
int initialThreads,
int highWaterMark,
int lowWaterMark,
long dequeueTimeout,
String name) {
this.maxQueueSize = mqs == -1 ? DEFAULT_MAX_QUEUE_SIZE : mqs;
this.initialThreads = initialThreads;
this.highWaterMark = -1 == highWaterMark ? Integer.MAX_VALUE : highWaterMark;
this.lowWaterMark = -1 == lowWaterMark ? Integer.MAX_VALUE : lowWaterMark;
this.dequeueTimeout = dequeueTimeout;
this.name = name;
this.changeListenerList = new ArrayList();
}
public void addChangeListener(PropertyChangeListener listener) {
this.changeListenerList.add(listener);
}
public void removeChangeListener(PropertyChangeListener listener) {
this.changeListenerList.remove(listener);
}
public void notifyChangeListeners(PropertyChangeEvent event) {
for (PropertyChangeListener listener : changeListenerList) {
listener.propertyChange(event);
}
}
public void setShared(boolean shared) {
this.shared = shared;
}
public boolean isShared() {
return shared;
}
public void addSharedUser() {
sharedCount++;
}
public void removeSharedUser() {
sharedCount--;
}
public int getShareCount() {
return sharedCount;
}
protected synchronized ThreadPoolExecutor getExecutor() {
if (executor == null) {
threadFactory = createThreadFactory(name);
executor = new ThreadPoolExecutor(lowWaterMark,
highWaterMark,
TimeUnit.MILLISECONDS.toMillis(dequeueTimeout),
TimeUnit.MILLISECONDS,
new LinkedBlockingQueue(maxQueueSize),
threadFactory) {
@Override
protected void terminated() {
ThreadFactory f = executor.getThreadFactory();
if (f instanceof AWQThreadFactory) {
((AWQThreadFactory)f).shutdown();
}
if (watchDog != null) {
watchDog.shutdown();
}
}
};
if (LOG.isLoggable(Level.FINE)) {
StringBuilder buf = new StringBuilder();
buf.append("Constructing automatic work queue with:\n");
buf.append("max queue size: " + maxQueueSize + "\n");
buf.append("initialThreads: " + initialThreads + "\n");
buf.append("lowWaterMark: " + lowWaterMark + "\n");
buf.append("highWaterMark: " + highWaterMark + "\n");
LOG.fine(buf.toString());
}
if (initialThreads > highWaterMark) {
initialThreads = highWaterMark;
}
// as we cannot prestart more core than corePoolSize initial threads, we temporarily
// change the corePoolSize to the number of initial threads
// this is important as otherwise these threads will be created only when
// the queue has filled up,
// potentially causing problems with starting up under heavy load
if (initialThreads < Integer.MAX_VALUE && initialThreads > 0) {
executor.setCorePoolSize(initialThreads);
int started = executor.prestartAllCoreThreads();
if (started < initialThreads) {
LOG.log(Level.WARNING, "THREAD_START_FAILURE_MSG",
new Object[] {started, initialThreads});
}
executor.setCorePoolSize(lowWaterMark);
}
ReentrantLock l = null;
try {
Field f = ThreadPoolExecutor.class.getDeclaredField("mainLock");
ReflectionUtil.setAccessible(f);
l = (ReentrantLock)f.get(executor);
} catch (Throwable t) {
l = new ReentrantLock();
}
mainLock = l;
try {
//java 5/6
addWorkerMethod = ThreadPoolExecutor.class.getDeclaredMethod("addIfUnderMaximumPoolSize",
Runnable.class);
addWorkerArgs = new Object[] {null};
} catch (Throwable t) {
try {
//java 7
addWorkerMethod = ThreadPoolExecutor.class.getDeclaredMethod("addWorker",
Runnable.class, Boolean.TYPE);
addWorkerArgs = new Object[] {null, Boolean.FALSE};
} catch (Throwable t2) {
//nothing we cando
}
}
}
return executor;
}
private AWQThreadFactory createThreadFactory(final String nm) {
ThreadGroup group;
try {
//Try and find the highest level ThreadGroup that we're allowed to use.
//That SHOULD allow the default classloader and thread locals and such
//to be the least likely to cause issues down the road.
group = AccessController.doPrivileged(
new PrivilegedAction() {
public ThreadGroup run() {
ThreadGroup group = Thread.currentThread().getThreadGroup();
ThreadGroup parent = group;
try {
while (parent != null) {
group = parent;
parent = parent.getParent();
}
} catch (SecurityException se) {
//ignore - if we get here, the "group" is as high as
//the security manager will allow us to go. Use that one.
}
return new ThreadGroup(group, nm + "-workqueue");
}
}
);
} catch (SecurityException e) {
group = new ThreadGroup(nm + "-workqueue");
}
return new AWQThreadFactory(group, nm);
}
static class DelayedTaskWrapper implements Delayed, Runnable {
long trigger;
Runnable work;
DelayedTaskWrapper(Runnable work, long delay) {
this.work = work;
trigger = System.currentTimeMillis() + delay;
}
public long getDelay(TimeUnit unit) {
long n = trigger - System.currentTimeMillis();
return unit.convert(n, TimeUnit.MILLISECONDS);
}
public int compareTo(Delayed delayed) {
long other = ((DelayedTaskWrapper)delayed).trigger;
int returnValue;
if (this.trigger < other) {
returnValue = -1;
} else if (this.trigger > other) {
returnValue = 1;
} else {
returnValue = 0;
}
return returnValue;
}
public void run() {
work.run();
}
}
class WatchDog extends Thread {
DelayQueue delayQueue;
AtomicBoolean shutdown = new AtomicBoolean(false);
WatchDog(DelayQueue queue) {
delayQueue = queue;
}
public void shutdown() {
shutdown.set(true);
// to exit the waiting thread
interrupt();
}
public void run() {
DelayedTaskWrapper task;
try {
while (!shutdown.get()) {
task = delayQueue.take();
if (task != null) {
try {
execute(task);
} catch (Exception ex) {
LOG.warning("Executing the task from DelayQueue with exception: " + ex);
}
}
}
} catch (InterruptedException e) {
if (LOG.isLoggable(Level.FINE)) {
LOG.finer("The DelayQueue watchdog Task is stopping");
}
}
}
}
class AWQThreadFactory implements ThreadFactory {
final AtomicInteger threadNumber = new AtomicInteger(1);
ThreadGroup group;
String name;
ClassLoader loader;
AWQThreadFactory(ThreadGroup gp, String nm) {
group = gp;
name = nm;
//force the loader to be the loader of CXF, not the application loader
loader = AutomaticWorkQueueImpl.class.getClassLoader();
}
public Thread newThread(final Runnable r) {
if (group.isDestroyed()) {
group = new ThreadGroup(group.getParent(), name + "-workqueue");
}
Runnable wrapped = new Runnable() {
public void run() {
++approxThreadCount;
try {
r.run();
} finally {
--approxThreadCount;
}
}
};
final Thread t = new Thread(group,
wrapped,
name + "-workqueue-" + threadNumber.getAndIncrement(),
0);
AccessController.doPrivileged(new PrivilegedAction() {
public Boolean run() {
t.setContextClassLoader(loader);
return true;
}
});
t.setDaemon(true);
if (t.getPriority() != Thread.NORM_PRIORITY) {
t.setPriority(Thread.NORM_PRIORITY);
}
return t;
}
public void setName(String s) {
name = s;
}
public void shutdown() {
if (!group.isDestroyed()) {
try {
group.destroy();
group.setDaemon(true);
} catch (Throwable t) {
//ignore
}
}
}
}
public void setName(String s) {
name = s;
if (threadFactory != null) {
threadFactory.setName(s);
}
}
public String getName() {
return name;
}
public String toString() {
StringBuilder buf = new StringBuilder();
buf.append(super.toString());
buf.append(" [queue size: ");
buf.append(getSize());
buf.append(", max size: ");
buf.append(maxQueueSize);
buf.append(", threads: ");
buf.append(getPoolSize());
buf.append(", active threads: ");
buf.append(getActiveCount());
buf.append(", low water mark: ");
buf.append(getLowWaterMark());
buf.append(", high water mark: ");
buf.append(getHighWaterMark());
buf.append("]");
return buf.toString();
}
public void execute(final Runnable command) {
//Grab the context classloader of this thread. We'll make sure we use that
//on the thread the runnable actually runs on.
final ClassLoader loader = Thread.currentThread().getContextClassLoader();
Runnable r = new Runnable() {
public void run() {
ClassLoaderHolder orig = ClassLoaderUtils.setThreadContextClassloader(loader);
try {
command.run();
} finally {
if (orig != null) {
orig.reset();
}
}
}
};
//The ThreadPoolExecutor in the JDK doesn't expand the number
//of threads until the queue is full. However, we would
//prefer the number of threads to expand immediately and
//only uses the queue if we've reached the maximum number
//of threads.
ThreadPoolExecutor ex = getExecutor();
ex.execute(r);
if (addWorkerMethod != null
&& !ex.getQueue().isEmpty()
&& this.approxThreadCount < highWaterMark
&& addThreadLock.tryLock()) {
try {
mainLock.lock();
try {
int ps = this.getPoolSize();
int sz = executor.getQueue().size();
int sz2 = this.getActiveCount();
if ((sz + sz2) > ps) {
ReflectionUtil.setAccessible(addWorkerMethod).invoke(executor, addWorkerArgs);
}
} catch (Exception exc) {
//ignore
} finally {
mainLock.unlock();
}
} finally {
addThreadLock.unlock();
}
}
}
// WorkQueue interface
public void execute(Runnable work, long timeout) {
try {
execute(work);
} catch (RejectedExecutionException ree) {
try {
if (!getExecutor().getQueue().offer(work, timeout, TimeUnit.MILLISECONDS)) {
throw ree;
}
} catch (InterruptedException ie) {
throw ree;
}
}
}
public synchronized void schedule(final Runnable work, final long delay) {
if (delayQueue == null) {
delayQueue = new DelayQueue();
watchDog = new WatchDog(delayQueue);
watchDog.setDaemon(true);
watchDog.start();
}
delayQueue.put(new DelayedTaskWrapper(work, delay));
}
// AutomaticWorkQueue interface
public void shutdown(boolean processRemainingWorkItems) {
if (executor != null) {
if (!processRemainingWorkItems) {
executor.getQueue().clear();
}
executor.shutdown();
}
}
/**
* Gets the maximum size (capacity) of the backing queue.
* @return the maximum size (capacity) of the backing queue.
*/
public long getMaxSize() {
return maxQueueSize;
}
/**
* Gets the current size of the backing queue.
* @return the current size of the backing queue.
*/
public long getSize() {
return executor == null ? 0 : executor.getQueue().size();
}
public boolean isEmpty() {
return executor == null ? true : executor.getQueue().size() == 0;
}
public boolean isFull() {
return executor == null ? false : executor.getQueue().remainingCapacity() == 0;
}
public int getHighWaterMark() {
int hwm = executor == null ? highWaterMark : executor.getMaximumPoolSize();
return hwm == Integer.MAX_VALUE ? -1 : hwm;
}
public int getLowWaterMark() {
int lwm = executor == null ? lowWaterMark : executor.getCorePoolSize();
return lwm == Integer.MAX_VALUE ? -1 : lwm;
}
public int getInitialSize() {
return this.initialThreads;
}
public void setHighWaterMark(int hwm) {
highWaterMark = hwm < 0 ? Integer.MAX_VALUE : hwm;
if (executor != null) {
notifyChangeListeners(new PropertyChangeEvent(this, "highWaterMark",
this.executor.getMaximumPoolSize(), hwm));
executor.setMaximumPoolSize(highWaterMark);
}
}
public void setLowWaterMark(int lwm) {
lowWaterMark = lwm < 0 ? 0 : lwm;
if (executor != null) {
notifyChangeListeners(new PropertyChangeEvent(this, "lowWaterMark",
this.executor.getCorePoolSize(), lwm));
executor.setCorePoolSize(lowWaterMark);
}
}
public void setInitialSize(int initialSize) {
notifyChangeListeners(new PropertyChangeEvent(this, "initialSize", this.initialThreads, initialSize));
this.initialThreads = initialSize;
}
public void setQueueSize(int size) {
notifyChangeListeners(new PropertyChangeEvent(this, "queueSize", this.maxQueueSize, size));
this.maxQueueSize = size;
}
public void setDequeueTimeout(long l) {
notifyChangeListeners(new PropertyChangeEvent(this, "dequeueTimeout", this.dequeueTimeout, l));
this.dequeueTimeout = l;
}
public boolean isShutdown() {
if (executor == null) {
return false;
}
return executor.isShutdown();
}
public int getLargestPoolSize() {
if (executor == null) {
return 0;
}
return executor.getLargestPoolSize();
}
public int getPoolSize() {
if (executor == null) {
return 0;
}
return executor.getPoolSize();
}
public int getActiveCount() {
if (executor == null) {
return 0;
}
return executor.getActiveCount();
}
public void update(Dictionary config) {
String s = config.get("highWaterMark");
if (s != null) {
this.highWaterMark = Integer.parseInt(s);
}
s = config.get("lowWaterMark");
if (s != null) {
this.lowWaterMark = Integer.parseInt(s);
}
s = config.get("initialSize");
if (s != null) {
this.initialThreads = Integer.parseInt(s);
}
s = config.get("dequeueTimeout");
if (s != null) {
this.dequeueTimeout = Long.parseLong(s);
}
s = config.get("queueSize");
if (s != null) {
this.maxQueueSize = Integer.parseInt(s);
}
}
public Dictionary getProperties() {
Dictionary properties = new Hashtable();
NumberFormat nf = NumberFormat.getIntegerInstance();
properties.put("name", nf.format(getName()));
properties.put("highWaterMark", nf.format(getHighWaterMark()));
properties.put("lowWaterMark", nf.format(getLowWaterMark()));
properties.put("initialSize", nf.format(getLowWaterMark()));
properties.put("dequeueTimeout", nf.format(getLowWaterMark()));
properties.put("queueSize", nf.format(getLowWaterMark()));
return properties;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy