All Downloads are FREE. Search and download functionalities are using the official Maven repository.

datafu.hourglass.mapreduce.CollapsingMapper Maven / Gradle / Ivy

Go to download

Librares that make easier to solve data problems using Hadoop and higher level languages based on it.

There is a newer version: 1.3.3
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package datafu.hourglass.mapreduce;

import java.io.IOException;
import java.io.Serializable;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

import org.apache.avro.UnresolvedUnionException;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.mapred.AvroKey;
import org.apache.avro.mapred.AvroValue;
import org.apache.hadoop.conf.Configurable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.MapContext;
import org.apache.hadoop.mapreduce.TaskInputOutputContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.log4j.Logger;


import datafu.hourglass.fs.PathUtils;
import datafu.hourglass.model.KeyValueCollector;
import datafu.hourglass.model.Mapper;
import datafu.hourglass.schemas.PartitionCollapsingSchemas;

/**
 * The mapper used by {@link datafu.hourglass.jobs.AbstractPartitionCollapsingIncrementalJob} and its derived classes.
 * 
 * 

* An implementation of {@link datafu.hourglass.model.Mapper} is used for the * map operation, which produces key and intermediate value pairs from the input. *

* */ public class CollapsingMapper extends ObjectMapper implements Serializable { private static Logger _log = Logger.getLogger(CollapsingMapper.class); private transient IdentityMapCollector _mapCollector; private transient TimeMapCollector _timeMapCollector; private boolean _reusePreviousOutput; private PartitionCollapsingSchemas _schemas; private Mapper _mapper; @Override public void map(Object inputObj, MapContext context) throws IOException, InterruptedException { @SuppressWarnings("unchecked") GenericRecord input = ((AvroKey)inputObj).datum(); try { getMapCollector().setContext(context); getMapper().map(input, getMapCollector()); } catch (InterruptedException e) { throw new IOException(e); } catch (UnresolvedUnionException e) { GenericRecord record = (GenericRecord)e.getUnresolvedDatum(); _log.error("UnresolvedUnionException on schema: " + record.getSchema()); throw e; } } /** * Gets whether previous output is being reused. * * @return true if previous output is reused */ public boolean getReuseOutput() { return _reusePreviousOutput; } /** * Sets whether previous output is being reused. * * @param reuseOutput true if previous output is reused */ public void setReuseOutput(boolean reuseOutput) { _reusePreviousOutput = reuseOutput; } @Override public void setContext(TaskInputOutputContext context) { super.setContext(context); if (_mapper instanceof Configurable) { ((Configurable)_mapper).setConf(context.getConfiguration()); } } /** * Gets the mapper. * * @return mapper the mapper */ public Mapper getMapper() { return _mapper; } /** * Sets the mapper. * * @param mapper the mapper */ public void setMapper(Mapper mapper) { _mapper = mapper; } /** * Sets the Avro schemas. * * @param schemas the schemas */ public void setSchemas(PartitionCollapsingSchemas schemas) { _schemas = schemas; } /** * Gets the Avro schemas. * * @return schemas the schemas */ public PartitionCollapsingSchemas getSchemas() { return _schemas; } /** * Gets the collector used to collect key-value pairs. * * @return The collector */ private MapCollector getMapCollector() { if (getReuseOutput()) { return getTimeMapCollector(); } else { return getIdentityMapCollector(); } } /** * Gets a collector that maps key-value pairs, where each value * is tagged with the partition from which it was derived. * * @return collector the collector */ private TimeMapCollector getTimeMapCollector() { if (_timeMapCollector == null) { _timeMapCollector = new TimeMapCollector(getSchemas()); } return _timeMapCollector; } /** * Gets a collector that maps key-value pairs as-is. * * @return collector the collector */ private IdentityMapCollector getIdentityMapCollector() { if (_mapCollector == null) { _mapCollector = new IdentityMapCollector(getSchemas()); } return _mapCollector; } private abstract class MapCollector implements KeyValueCollector { private MapContext context; public void setContext(MapContext context) { this.context = context; } public MapContext getContext() { return context; } } /** * A {@see KeyValueCollector} that outputs key-value pairs to {@link MapContext} * and tags each mapped value with the time for the partition it was derived from. * */ private class TimeMapCollector extends MapCollector { private GenericRecord wrappedValue; private InputSplit lastSplit; private long lastTime; public TimeMapCollector(PartitionCollapsingSchemas schemas) { this.wrappedValue = new GenericData.Record(schemas.getDatedIntermediateValueSchema()); } public void collect(GenericRecord key, GenericRecord value) throws IOException, InterruptedException { if (key == null) { throw new RuntimeException("key is null"); } if (value == null) { throw new RuntimeException("value is null"); } // wrap the value with the time so we know what to merge and what to unmerge long time; if (lastSplit == getContext().getInputSplit()) { time = lastTime; } else { FileSplit currentSplit; lastSplit = getContext().getInputSplit(); try { Method m = getContext().getInputSplit().getClass().getMethod("getInputSplit"); m.setAccessible(true); currentSplit = (FileSplit)m.invoke(getContext().getInputSplit()); } catch (SecurityException e) { throw new RuntimeException(e); } catch (NoSuchMethodException e) { throw new RuntimeException(e); } catch (IllegalArgumentException e) { throw new RuntimeException(e); } catch (IllegalAccessException e) { throw new RuntimeException(e); } catch (InvocationTargetException e) { throw new RuntimeException(e); } time = PathUtils.getDateForNestedDatedPath((currentSplit).getPath().getParent()).getTime(); lastTime = time; } wrappedValue.put("time", time); wrappedValue.put("value", value); getContext().write(new AvroKey(key),new AvroValue(wrappedValue)); } } /** * A {@see KeyValueCollector} that outputs key-value pairs to {@link MapContext} as-is. * */ private class IdentityMapCollector extends MapCollector { public IdentityMapCollector(PartitionCollapsingSchemas schemas) { } public void collect(GenericRecord key, GenericRecord value) throws IOException, InterruptedException { if (key == null) { throw new RuntimeException("key is null"); } if (value == null) { throw new RuntimeException("value is null"); } getContext().write(new AvroKey(key), new AvroValue(value)); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy