All Downloads are FREE. Search and download functionalities are using the official Maven repository.

datafu.hourglass.mapreduce.CollapsingReducer Maven / Gradle / Ivy

Go to download

Librares that make easier to solve data problems using Hadoop and higher level languages based on it.

There is a newer version: 1.3.3
Show newest version
/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package datafu.hourglass.mapreduce;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.generic.GenericData.Record;
import org.apache.avro.mapred.AvroKey;
import org.apache.avro.mapred.AvroValue;
import org.apache.hadoop.mapreduce.ReduceContext;


import datafu.hourglass.fs.DateRange;
import datafu.hourglass.jobs.DateRangeConfigurable;
import datafu.hourglass.model.Accumulator;
import datafu.hourglass.model.Merger;
import datafu.hourglass.schemas.PartitionCollapsingSchemas;

/**
 * The reducer used by {@link datafu.hourglass.jobs.AbstractPartitionCollapsingIncrementalJob} and its derived classes.
 * 
 * 

* An implementation of {@link datafu.hourglass.model.Accumulator} is used to perform aggregation and produce the * output value. *

* */ public class CollapsingReducer extends ObjectReducer implements DateRangeConfigurable, Serializable { protected long _beginTime; protected long _endTime; private Accumulator _newAccumulator; private Accumulator _oldAccumulator; private Merger _merger; private Merger _oldMerger; private boolean _reusePreviousOutput; private PartitionCollapsingSchemas _schemas; @SuppressWarnings("unchecked") public void reduce(Object keyObj, Iterable values, ReduceContext context) throws IOException, InterruptedException { if (_newAccumulator == null) { throw new RuntimeException("No reducer set"); } GenericRecord key = ((AvroKey)keyObj).datum(); // used when processing all data (i.e. no window size) Accumulator acc = getNewAccumulator(); acc.cleanup(); long accumulatedCount = 0; Accumulator accOld = null; long oldAccumulatedCount = 0; if (getReuseOutput()) { accOld = getOldAccumulator(); accOld.cleanup(); } GenericRecord previous = null; for (Object valueObj : values) { GenericRecord value = ((AvroValue)valueObj).datum(); if (value.getSchema().getFullName().equals(getSchemas().getIntermediateValueSchema().getFullName())) { acc.accumulate(value); accumulatedCount++; } else if (value.getSchema().getFullName().equals(getSchemas().getDatedIntermediateValueSchema().getFullName())) { if (!_reusePreviousOutput) { throw new RuntimeException("Did not expect " + getSchemas().getDatedIntermediateValueSchema().getFullName()); } Long time = (Long)value.get("time"); GenericRecord data = (GenericData.Record)value.get("value"); if (time == null) { throw new RuntimeException("time is null"); } if (data == null) { throw new RuntimeException("value is null"); } if (time >= _beginTime && time <= _endTime) { acc.accumulate(data); accumulatedCount++; } else if (time < _beginTime) { accOld.accumulate(data); oldAccumulatedCount++; } else { throw new RuntimeException(String.format("Time %d is greater than end time %d",time,_endTime)); } } else if (value.getSchema().getFullName().equals(getSchemas().getOutputValueSchema().getFullName())) { if (!_reusePreviousOutput) { throw new RuntimeException("Did not expect " + getSchemas().getDatedIntermediateValueSchema().getFullName()); } // deep clone the previous output fed back in previous = new GenericData.Record((Record)value,true); } else { throw new RuntimeException("Unexpected type: " + value.getSchema().getFullName()); } } GenericRecord newOutputValue = null; GenericRecord oldOutputValue = null; if (accumulatedCount > 0) { newOutputValue = acc.getFinal(); } if (oldAccumulatedCount > 0) { oldOutputValue = accOld.getFinal(); } GenericRecord outputValue = null; if (previous == null) { outputValue = newOutputValue; if (oldOutputValue != null) { if (_oldMerger == null) { throw new RuntimeException("No old record merger set"); } outputValue = _oldMerger.merge(outputValue, oldOutputValue); } } else { outputValue = previous; if (oldOutputValue != null) { if (_oldMerger == null) { throw new RuntimeException("No old record merger set"); } outputValue = _oldMerger.merge(outputValue, oldOutputValue); } if (newOutputValue != null) { if (_merger == null) { throw new RuntimeException("No new record merger set"); } outputValue = _merger.merge(outputValue, newOutputValue); } } if (outputValue != null) { GenericRecord output = new GenericData.Record(getSchemas().getReduceOutputSchema()); output.put("key", key); output.put("value", outputValue); context.write(new AvroKey(output),null); } } /** * Sets the Avro schemas. * * @param schemas the schemas */ public void setSchemas(PartitionCollapsingSchemas schemas) { _schemas = schemas; } /** * Gets the Avro schemas. * * @return the schemas */ private PartitionCollapsingSchemas getSchemas() { return _schemas; } /** * Gets whether previous output is being reused. * * @return true if previous output is reused */ public boolean getReuseOutput() { return _reusePreviousOutput; } /** * Sets whether previous output is being reused. * * @param reuseOutput true if previous output is reused */ public void setReuseOutput(boolean reuseOutput) { _reusePreviousOutput = reuseOutput; } public void setAccumulator(Accumulator acc) { _newAccumulator = cloneAccumulator(acc); _oldAccumulator = cloneAccumulator(acc); } public Accumulator getNewAccumulator() { return _newAccumulator; } public Accumulator getOldAccumulator() { return _oldAccumulator; } public void setRecordMerger(Merger merger) { _merger = merger; } public void setOldRecordMerger(Merger merger) { _oldMerger = merger; } public void setOutputDateRange(DateRange dateRange) { _beginTime = dateRange.getBeginDate().getTime(); _endTime = dateRange.getEndDate().getTime(); } /** * Clone a {@link Accumulator} by serializing and deserializing it. * * @param acc The accumulator to clone * @return The clone accumulator */ private Accumulator cloneAccumulator(Accumulator acc) { try { // clone by serializing ByteArrayOutputStream outputStream = new ByteArrayOutputStream(); ObjectOutputStream objStream; objStream = new ObjectOutputStream(outputStream); objStream.writeObject(acc); objStream.close(); outputStream.close(); ByteArrayInputStream inputStream = new ByteArrayInputStream(outputStream.toByteArray()); ObjectInputStream objInputStream = new ObjectInputStream(inputStream); @SuppressWarnings("unchecked") Accumulator result = (Accumulator)objInputStream.readObject(); objInputStream.close(); inputStream.close(); return result; } catch (IOException e) { throw new RuntimeException(e); } catch (ClassNotFoundException e) { throw new RuntimeException(e); } } }