org.apache.datasketches.hive.tuple.DataToArrayOfDoublesSketchUDAF Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of datasketches-hive Show documentation
Show all versions of datasketches-hive Show documentation
Apache Hive adaptors for the DataSketches library.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.datasketches.hive.tuple;
import static org.apache.datasketches.Util.DEFAULT_NOMINAL_ENTRIES;
import java.util.Arrays;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.udf.generic.AbstractGenericUDAFResolver;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFParameterInfo;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector.PrimitiveCategory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorUtils;
@Description(
name = "DataToArrayOfDoublesSketch",
value = "_FUNC_(key, double param 1, ..., double param N, nominal number of entries, sampling probability)",
extended = "Returns an ArrayOfDoublesSketch as a binary blob that can be operated on by other"
+ " ArrayOfDoublesSketch related functions. "
+ "The nominal number of entries is optional, must be a power of 2,"
+ " and controls the relative error expected from the sketch."
+ " A number of 16384 can be expected to yield errors of roughly +-1.5% in the estimation of"
+ " uniques. The default number is defined in the sketches-core library, and at the time of this"
+ " writing was 4096 (about 3% error)."
+ " The sampling probability is optional and must be from 0 to 1. The default is 1 (no sampling)")
@SuppressWarnings("deprecation")
public class DataToArrayOfDoublesSketchUDAF extends AbstractGenericUDAFResolver {
@Override
public GenericUDAFEvaluator getEvaluator(final GenericUDAFParameterInfo info) throws SemanticException {
final ObjectInspector[] inspectors = info.getParameterObjectInspectors();
if (inspectors.length < 2) {
throw new UDFArgumentException("Expected at least 2 arguments");
}
ObjectInspectorValidator.validateCategoryPrimitive(inspectors[0], 0);
int numValues = 0;
while ((numValues + 1) < inspectors.length) {
ObjectInspectorValidator.validateCategoryPrimitive(inspectors[numValues + 1], numValues + 1);
final PrimitiveObjectInspector primitiveInspector =
(PrimitiveObjectInspector) inspectors[numValues + 1];
if (primitiveInspector.getPrimitiveCategory() != PrimitiveCategory.DOUBLE) { break; }
numValues++;
}
if (numValues == 0) {
throw new UDFArgumentException("Expected at least 1 double value");
}
// nominal number of entries
if (inspectors.length > (numValues + 1)) {
ObjectInspectorValidator.validateIntegralParameter(inspectors[numValues + 1], numValues + 1);
}
// sampling probability
if (inspectors.length > (numValues + 2)) {
ObjectInspectorValidator.validateGivenPrimitiveCategory(inspectors[numValues + 2],
numValues + 2, PrimitiveCategory.FLOAT);
}
// there must be nothing after sampling probability
if (inspectors.length > (numValues + 3)) {
throw new UDFArgumentException("Unexpected argument " + (numValues + 4));
}
return new DataToArrayOfDoublesSketchEvaluator();
}
public static class DataToArrayOfDoublesSketchEvaluator extends ArrayOfDoublesSketchEvaluator {
private static final float DEFAULT_SAMPLING_PROBABILITY = 1f;
private PrimitiveObjectInspector keyInspector_;
private PrimitiveObjectInspector[] valuesInspectors_;
private PrimitiveObjectInspector samplingProbabilityInspector_;
private int numValues_;
private Mode mode_;
@Override
public ObjectInspector init(final Mode mode, final ObjectInspector[] parameters) throws HiveException {
super.init(mode, parameters);
this.mode_ = mode;
if ((mode == Mode.PARTIAL1) || (mode == Mode.COMPLETE)) {
// input is original data
this.keyInspector_ = (PrimitiveObjectInspector) parameters[0];
this.numValues_ = 0;
while ((this.numValues_ + 1) < parameters.length) {
if (((PrimitiveObjectInspector) parameters[this.numValues_ + 1]).getPrimitiveCategory()
!= PrimitiveCategory.DOUBLE) {
break;
}
this.numValues_++;
}
this.valuesInspectors_ = new PrimitiveObjectInspector[this.numValues_];
for (int i = 0; i < this.numValues_; i++) {
this.valuesInspectors_[i] = (PrimitiveObjectInspector) parameters[i + 1];
}
if (parameters.length > (this.numValues_ + 1)) {
this.nominalNumEntriesInspector_ = (PrimitiveObjectInspector) parameters[this.numValues_ + 1];
}
if (parameters.length > (this.numValues_ + 2)) {
this.samplingProbabilityInspector_ = (PrimitiveObjectInspector) parameters[this.numValues_ + 2];
}
} else {
// input for PARTIAL2 and FINAL is the output from PARTIAL1
this.intermediateInspector_ = (StructObjectInspector) parameters[0];
}
if ((mode == Mode.PARTIAL1) || (mode == Mode.PARTIAL2)) {
// intermediate results need to include the the nominal number of entries and number of values
return ObjectInspectorFactory.getStandardStructObjectInspector(
Arrays.asList(NOMINAL_NUM_ENTRIES_FIELD, NUM_VALUES_FIELD, SKETCH_FIELD),
Arrays.asList(
PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(PrimitiveCategory.INT),
PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(PrimitiveCategory.INT),
PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(PrimitiveCategory.BINARY)
)
);
}
// final results include just the sketch
return PrimitiveObjectInspectorFactory.getPrimitiveWritableObjectInspector(PrimitiveCategory.BINARY);
}
@Override
public void iterate(final AggregationBuffer buf,
final Object[] data) throws HiveException {
if (data[0] == null) { return; }
final ArrayOfDoublesSketchState state = (ArrayOfDoublesSketchState) buf;
if (!state.isInitialized()) {
initializeState(state, data);
}
state.update(data, this.keyInspector_, this.valuesInspectors_);
}
private void initializeState(final ArrayOfDoublesSketchState state, final Object[] data) {
int nominalNumEntries = DEFAULT_NOMINAL_ENTRIES;
if (this.nominalNumEntriesInspector_ != null) {
nominalNumEntries =
PrimitiveObjectInspectorUtils.getInt(data[this.numValues_ + 1], this.nominalNumEntriesInspector_);
}
float samplingProbability = DEFAULT_SAMPLING_PROBABILITY;
if (this.samplingProbabilityInspector_ != null) {
samplingProbability = PrimitiveObjectInspectorUtils.getFloat(data[this.numValues_ + 2],
this.samplingProbabilityInspector_);
}
state.init(nominalNumEntries, samplingProbability, this.numValues_);
}
@Override
public AggregationBuffer getNewAggregationBuffer() throws HiveException {
if ((this.mode_ == Mode.PARTIAL1) || (this.mode_ == Mode.COMPLETE)) {
return new ArrayOfDoublesSketchState();
}
return new ArrayOfDoublesUnionState();
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy