All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.datasketches.cpc.CpcConfidence Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.apache.datasketches.cpc;

import static java.lang.Math.ceil;
import static java.lang.Math.log;
import static java.lang.Math.sqrt;
import static org.apache.datasketches.cpc.IconEstimator.getIconEstimate;

/**
 * Tables and methods for estimating upper and lower bounds.
 *
 * 

Tables were generated from empirical measurements at N = 1000 * K using millions of trials. * * @author Lee Rhodes */ final class CpcConfidence { private static final double iconErrorConstant = log(2.0); //0.693147180559945286 private static final double hipErrorConstant = sqrt(log(2.0) / 2.0); //0.588705011257737332 static short[] iconLowSideData = { //1, 2, 3, kappa // lgK numtrials 6037, 5720, 5328, // 4 1000000 6411, 6262, 5682, // 5 1000000 6724, 6403, 6127, // 6 1000000 6665, 6411, 6208, // 7 1000000 6959, 6525, 6427, // 8 1000000 6892, 6665, 6619, // 9 1000000 6792, 6752, 6690, // 10 1000000 6899, 6818, 6708, // 11 1000000 6871, 6845, 6812, // 12 1046369 6909, 6861, 6828, // 13 1043411 6919, 6897, 6842, // 14 1000297 }; static short[] iconHighSideData = { //1, 2, 3, kappa // lgK numtrials 8031, 8559, 9309, // 4 1000000 7084, 7959, 8660, // 5 1000000 7141, 7514, 7876, // 6 1000000 7458, 7430, 7572, // 7 1000000 6892, 7141, 7497, // 8 1000000 6889, 7132, 7290, // 9 1000000 7075, 7118, 7185, // 10 1000000 7040, 7047, 7085, // 11 1000000 6993, 7019, 7053, // 12 1046369 6953, 7001, 6983, // 13 1043411 6944, 6966, 7004, // 14 1000297 }; static short[] hipLowSideData = { //1, 2, 3, kappa // lgK numtrials 5871, 5247, 4826, // 4 1000000 5877, 5403, 5070, // 5 1000000 5873, 5533, 5304, // 6 1000000 5878, 5632, 5464, // 7 1000000 5874, 5690, 5564, // 8 1000000 5880, 5745, 5619, // 9 1000000 5875, 5784, 5701, // 10 1000000 5866, 5789, 5742, // 11 1000000 5869, 5827, 5784, // 12 1046369 5876, 5860, 5827, // 13 1043411 5881, 5853, 5842, // 14 1000297 }; static short[] hipHighSideData = { //1, 2, 3, kappa // lgK numtrials 5855, 6688, 7391, // 4 1000000 5886, 6444, 6923, // 5 1000000 5885, 6254, 6594, // 6 1000000 5889, 6134, 6326, // 7 1000000 5900, 6072, 6203, // 8 1000000 5875, 6005, 6089, // 9 1000000 5871, 5980, 6040, // 10 1000000 5889, 5941, 6015, // 11 1000000 5871, 5926, 5973, // 12 1046369 5866, 5901, 5915, // 13 1043411 5880, 5914, 5953, // 14 1000297 }; static double getIconConfidenceLB(final int lgK, final long numCoupons, final int kappa) { if (numCoupons == 0) { return 0.0; } assert lgK >= 4; assert (kappa >= 1) && (kappa <= 3); double x = iconErrorConstant; if (lgK <= 14) { x = (iconHighSideData[(3 * (lgK - 4)) + (kappa - 1)]) / 10000.0; } final double rel = x / sqrt(1 << lgK); final double eps = kappa * rel; final double est = getIconEstimate(lgK, numCoupons); double result = est / (1.0 + eps); if (result < numCoupons) { result = numCoupons; } return result; } static double getIconConfidenceUB(final int lgK, final long numCoupons, final int kappa) { if (numCoupons == 0) { return 0.0; } assert lgK >= 4; assert (kappa >= 1) && (kappa <= 3); double x = iconErrorConstant; if (lgK <= 14) { x = (iconLowSideData[(3 * (lgK - 4)) + (kappa - 1)]) / 10000.0; } final double rel = x / sqrt(1 << lgK); final double eps = kappa * rel; final double est = getIconEstimate(lgK, numCoupons); final double result = est / (1.0 - eps); return ceil(result); // slight widening of interval to be conservative } //mergeFlag must already be checked as false static double getHipConfidenceLB(final int lgK, final long numCoupons, final double hipEstAccum, final int kappa) { if (numCoupons == 0) { return 0.0; } assert lgK >= 4; assert (kappa >= 1) && (kappa <= 3); double x = hipErrorConstant; if (lgK <= 14) { x = (hipHighSideData[(3 * (lgK - 4)) + (kappa - 1)]) / 10000.0; } final double rel = x / sqrt(1 << lgK); final double eps = kappa * rel; final double est = hipEstAccum; double result = est / (1.0 + eps); if (result < numCoupons) { result = numCoupons; } return result; } //mergeFlag must already be checked as false static double getHipConfidenceUB(final int lgK, final long numCoupons, final double hipEstAccum, final int kappa) { if (numCoupons == 0) { return 0.0; } assert lgK >= 4; assert (kappa >= 1) && (kappa <= 3); double x = hipErrorConstant; if (lgK <= 14) { x = (hipLowSideData[(3 * (lgK - 4)) + (kappa - 1)]) / 10000.0; } final double rel = x / sqrt(1 << lgK); final double eps = kappa * rel; final double est = hipEstAccum; final double result = est / (1.0 - eps); return ceil(result); // widening for coverage } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy